scholarly journals Preparation and Characterization of Activated Carbon from Waste Rubber Tires: A Comparison between Physical and Chemical Activation

2015 ◽  
Vol 1107 ◽  
pp. 347-352 ◽  
Author(s):  
Collin Glen Joseph ◽  
Duduku Krishniah ◽  
Yun Hin Taufiq-Yap ◽  
Masnah Massuanna ◽  
Jessica William

Abstract. Waste tires, which are an abundant waste product of the automobile industry, were used to prepare activated carbon by means of physical and chemical activation. A two-stage process was used, with a semi-carbonization stage as the first stage, followed by an activation stage as the second stage.All experiments were conducted in a laboratory-scale muffle furnace under static conditions in a self-generated atmosphere. During this process, the effects of the parametric variables of semi-carbonization time (for the physical activation process), activation time and temperature and impregnation ratios (for the chemical activation process) on the percentage yield were studied and compared. Varying these parametric variables yielded interesting results, which in turn affected the adsorption process of 2,4-DCP, which was the simulated pollutant in aqueous form. The optimized percentage yields of activated carbon that were obtained were 41.55% and 44.88% ofthe physical and chemical activation treatment processes respectively.Keywords: Physical activation, chemical activation, waste rubber tires, 2,4-dichlorophenol, activated carbon.

2014 ◽  
Vol 14 (1) ◽  
pp. 82-98
Author(s):  
Andy Mizwar

Limbah rotan dari industri kerajinan dan mebel berpotensi untuk dijadikan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan holoselulosa dan kadar karbon yang tinggi. Penelitian ini bertujuan untuk menganalisis efektifitas dari aktivasi kimia menggunakan larutan natrium klorida (NaCl) yang dilanjutkan dengan aktivasi fisik dalam pembuatan karbon aktif berbahan dasar  limbah serutan rotan. Pembuatan karbon aktif diawali dengan proses karbonisasi pada suhu 250°C selama 1 jam. Selanjutnya aktivasi kimia menggunakan larutan NaCl dengan variasi konsentrasi 10%, 15% dan 20% serta waktu perendaman selama 10, 15 dan 20 jam. Aktivasi fisik dilakukan dengan pembakaran pada suhu 700°C selama 30 menit. Analisis karakteristik fisik-kimia karbon aktif mengacu pada SNI 06-3730-95, meliputi kadar air, fixed carbon, dan iodine number, sedangkan perhitungan luas permukaan spesifik karbon aktif dilakukan dengan Metode Sears. Hasil penelitian ini menunjukkan bahwa kondisi optimum aktivasi kimia terjadi pada konsentrasi NaCl 10% dan lama perendaman 10 jam dengan hasil analisis kadar air 2.90%, fixed carbon 72.70%, iodine number 994.59 mg/g dan luas permukaan 1587.67 m²/g. Peningkatan fixed carbon, iodine number dan luas permukaan karbon aktif berbanding terbalik dengan peningkatan konsentrasi NaCl dan lama waktu perendaman, sedangkan peningkatan kadar air pada karbon aktif berlaku sebaliknya. Rattan waste from handicraft and furniture industry could potentially be used as raw material of activated carbon due to high content of holoselulosa and carbon. This paper investigates the effectiveness of chemical activation using sodium chloride (NaCl) followed by physical activation in the making of activated carbon-based on rattan shavings waste. Preparation of the activated carbon began with the carbonization process at 250°C for 1 hour. Furthermore chemical activation using a variation of NaCl concentrations 10%, 15% and 20% as well as the time of immersion 10, 15 and 20 hours. Physical activation was done by burning at 700°C for 30 minutes. Analysis of the physical and chemical characteristics of the activated carbon was referred to the SNI 06-3730-95, including of moisture content, fixed carbon and iodine number, while the calculation of the specific surface area was done by the Sears’s method. The results of this study showed that the optimum conditions of chemical activation occurred in impregnation by NaCl 10% for 10 hours. The water content, fixed carbon, iodine number and surface area of activated carbon was 2.90%, 72.70%, 994.59 mg/g and 1587.67 m²/g  respectively. The increase values of fixed carbon, iodine number, and surface area was inversely proportional to the increase of NaCl concentration and the length of impregnation time, while the increase of water content applied vice versa.


2014 ◽  
Vol 896 ◽  
pp. 179-182 ◽  
Author(s):  
Erman Taer ◽  
Iwantono ◽  
Saidul Tua Manik ◽  
R. Taslim ◽  
D. Dahlan ◽  
...  

Binderless activated carbon monoliths (ACMs) for supercapacitor electrodes were prepared from sugarcane bagasse by two different methods of physical and combination of physical-chemical activation process. The CO2 gas was used as physical activation agent and 0.3 M KOH was chosen as chemical activation agent. The ACMs were tested as electrodes in two-electrode systems of the coin tape cell supercapacitor that consists of stainless steel as current collectors and 1 M H2SO4 as an electrolyte. The improving of resistive, capacitive and energy properties of combination of physical-chemical ACMs electrodes were shown by an impedance spectroscopy, a cyclic voltammetry and a galvanostatic charge-discharge method. The improving of resistive, capacitive and energy properties as high as 1 to 0.6 Ω, 146 to 178 F g-1, 3.83 to 4.72 W h kg-1, respectively. The X-ray diffraction analysis and field emission scanning electron microscope were performed to characterize the crystallite and morphology characteristics. The results showed that the combination of physical-chemical activation process have given a good improving in performance of the bagasse based ACMs electrodes in supercapacitor application.


Author(s):  
Muhammad S. Muzarpar ◽  
A. M. Leman

Activated carbon (AC) was recognized by many researchers as useful substance in adsorption of impurities. Several processes involved in the production of AC which were carbonization, crushing, and activation process. Carbonization of carbon required high temperature up to 900oC. Then the carbon will be crush to a desired size for activation process. Activation of carbon can be either chemical activation, physical activation or combination of chemical and physical activation which called physiochemical activation. The mechanism adsorption of AC commonly due to its micropore present in the carbon or the weak vander waals forces which can attract the impurities. Activated carbon have multiple function in human daily life. This study will be discuss the function of AC in the production face mask, water filtration and air filtration.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 345 ◽  
Author(s):  
Rajamani. R ◽  
Vinoth Kumar.B ◽  
Sujith . A ◽  
Karthick E

Activated carbon is used as filter medium for the removal of hazardous particles in exhaust gases, in the purification of water and also in waste water treatment. Activated carbon is used in gas purification, water purification, sewage treatment and many other applications. This concept is used to satisfy the continuously increasing demand of activated carbon at low cost.The textile industry is one of the largest producers of dye effluent. Treatment of these effluents has to be cost effective hence a number of precursors have been studied as a viable alternative adsorbent. The present work relates to efforts made towards developing a high surface area activated carbon produced from the fruit shells of sterculia foetida by chemical activation process with phosphoric acid as the activating agent the fruit shell of sterculia foetida constitute a novel precursor for the preparation of activated carbon which has not yet been identified as a source for carbon material. Experiments were conducted in lab scale using muffle furnaces under static conditions in a self–generated atmosphere covering process parameters such as Impregnation Ratio (IR), Carbonization time and Temperature. The process parameters are characterized and optimized based on the Methylene Blue number, Methyl Violet Number and the Iodine number.The adsorption of reactive orange dye onto fruit shell of sterculia foetida activated carbon from aqueous solution was investigated. The process is carried out varying the process parameters as Impregnation Ratio (1:1 to 1:6), Activation Temperature (300 to 800 oC) and Activation Time (60 to 210 min).   


METANA ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 61-68
Author(s):  
Syarifuddin Oko ◽  
Mustafa Mustafa ◽  
Andri Kurniawan ◽  
Lintang Norfitria

 Pengunaan plastik setiap hari mengakibatkan terjadinya penumpukan sampah plastik yang dapat mencemari lingkungan dan menjadi salah satu masalah serius yang harus ditangani karena plastik tidak dapat terdegradasi. Plastik merupakan senyawa yang unsur penyusun utamanya adalah karbon dan hidrogen. Sehingga limbah plastik berpotensi sebagai pembuatan karbon aktif dan akan membuat limbah plastik menjadi lebih bermanfaat. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi aktivator dan waktu aktivasi terhadap proses aktivasi fisika kimia sehingga menghasilkan produk karbon aktif yang sesuai dengan SNI 06-3730-1995. Plastik PET terlebih dahulu dikarbonasi pada temperatur 480oC selama 2 jam menggunakan furnace hingga membentuk arang. Lalu, direndam dalam aseton selama 24 jam. Setelah itu disaring dan dikeringkan menggunakan oven pada temperatur 110oC selama 3 jam dan dilanjutkan dengan proses aktivasi fisika pada temperatur 750oC selama 2 jam. Karbon yang telah teraktivasi fisika selanjutnya diaktivasi secara kimia dengan menggunakan KOH konsentrasi 1 M, 2 M, 3 M, dan 4M dengan variasi waktu  2 jam dan 4 jam. Diperoleh hasil terbaik yaitu pada karbon aktif dengan konsentrasi KOH 4 M dan waktu aktivasi 2 jam dengan nilai daya serap iod sebesar 980,17 mg/g, kadar abu 0,28%, kadar air 7,55%, dan kadar volatile matter 3,47%. Karbon aktif yang diperoleh telah memenuhi SNI 06-3730-1995.The use of plastic every day results in the accumulation of plastic waste that can pollute the environment and was a serious problem that must be addressed because plastic cannot be degraded. Plastic was a compound whose main constituent elements were carbon and hydrogen. So that plastic waste has the potential to produce activated carbon and will make plastic waste more useful. This study aims to determine the effect of activator concentration and activation time on the physical-chemical activation process so as to produce activated carbon products in accordance with SNI 06-3730-1995. PET plastik was first carbonated at a temperature of 480oC for 2 hours using a furnace to form charcoal. Then, soaked in acetone for 24 hours. After that it was filtered and dried using an oven at a temperature of 110oC for 3 hours and continued with the physical activation process at a temperature of 750oC for 2 hours. The physically activated carbon was then chemically activated using KOH concentrations of 1 M, 2 M, 3 M, and 4 M with time variations of 2 hours and 4 hours. The best results were obtained on activated carbon with a concentration of KOH 4 M and an activation time of 2 hours with an iodine absorption value of 980.17 mg/g, 0.28% ash content, 7.55% water content, and volatile matter levels 3,47%. Activated carbon obtained has complied with SNI 06-3730-1995.


2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 592 ◽  
Author(s):  
Chao Ge ◽  
Dandan Lian ◽  
Shaopeng Cui ◽  
Jie Gao ◽  
Jianjun Lu

Low-cost activated carbons were prepared from waste polyurethane foam by physical activation with CO2 for the first time and chemical activation with Ca(OH)2, NaOH, or KOH. The activation conditions were optimized to produce microporous carbons with high CO2 adsorption capacity and CO2/N2 selectivity. The sample prepared by physical activation showed CO2/N2 selectivity of up to 24, much higher than that of chemical activation. This is mainly due to the narrower microporosity and the rich N content produced during the physical activation process. However, physical activation samples showed inferior textural properties compared to chemical activation samples and led to a lower CO2 uptake of 3.37 mmol·g−1 at 273 K. Porous carbons obtained by chemical activation showed a high CO2 uptake of 5.85 mmol·g−1 at 273 K, comparable to the optimum activated carbon materials prepared from other wastes. This is mainly attributed to large volumes of ultra-micropores (<1 nm) up to 0.212 cm3·g−1 and a high surface area of 1360 m2·g−1. Furthermore, in consideration of the presence of fewer contaminants, lower weight losses of physical activation samples, and the excellent recyclability of both physical- and chemical-activated samples, the waste polyurethane foam-based carbon materials exhibited potential application prospects in CO2 capture.


2018 ◽  
Vol 36 (8) ◽  
pp. 708-718 ◽  
Author(s):  
AO Adelopo ◽  
PI Haris ◽  
B Alo ◽  
K Huddersman ◽  
RO Jenkins

Heterogeneous composite wastes from landfills were evaluated as precursors for the generation of activated carbon (AC). A single-step chemical activation process was applied involving irradiation with microwave energy and impregnation with KOH. The average percentage yield of AC from active landfill precursor was higher than that from closed landfill for all depths sampled. Increase in impregnation ratio and irradiation power decreased the average percentage yield for both landfill precursors (active: 38.1 to 33.1%; closed: 42.1 to 33.3%). The optimum pH range for adsorption of methylene blue was pH 6–7, while adsorption increased with increase in temperature over the range 30 to 50°C. Carbonyl and hydroxyl groups were the major functional groups on the surface of AC. The properties of the AC are potentially suitable for the removal of cationic dyes and pollutants. AC generated from the landfill composite was comparable to that from other biomass being managed through AC generation. This is the first report to demonstrate the possible reuse of landfill composite as AC. The reuse option of landfill composite could provide a means of sustainable management of landfilled municipal waste.


2015 ◽  
Vol 15 (1) ◽  
pp. 22 ◽  
Author(s):  
A. Nur Hidayah ◽  
M.A. Umi Fazara ◽  
Z. Nor Fauziah ◽  
M.K. Aroua

The properties of the activated carbon from Sea Mango (Cerbera Odollam) prepared from chemical and physical activation was studied. The sample was impregnated with phosphoric acid (H3PO4) at the impregnation ratio of precursor to activant as 1:2 and followed by thermal activation at 500 °C with different flowing gas i.e. nitrogen (N2), carbon dioxide (CO2), steam and at the absent of any gases for duration of 2 hours. The sample experienced two different steps of preparation which were Method 1 and Method 2. In Method 1, the precursor will be thermally heated after the chemical activation process, and the samples were denoted as RIHM1-N, RIHM1-CO2, RIHM1-S and RIHM1-A which utilize either N2, CO2, steam and absent of any gases, respectively. Meanwhile in Method 2, the carbonization process with N2 flow at 200 °C was done prior to chemical and thermal activation. This type of treatment method was denoted as RCIHM2-N, RCIHM2-CO2 RCIHM2-S and RCIHM2-A, which use the same flowing gases as described previously. The surface area of the activated carbon was determined using standard method (ASTM) of iodine test. A higher iodine number reading was given by the sample prepared via Method 2 i.e. 1021.74 mg/g, 1069.98 mg/g 902.40 mg/g and 1040.58 mg/g for sample RCIHM2-N, RCIHM2-CO2, RCIHM2-S and RCIHM2-A, respectively. For sample prepared via Method 1, the iodine number measurement for sample RIHM1-N, RIHM1-CO2, RIHM1-S and RIHM1-A were 896.480 mg/g, 810.900 mg/g, 973.70 mg/g and 856.217mg/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document