A review of mitochondrial disease in dogs

2021 ◽  
Vol 26 (10) ◽  
pp. 1-8
Author(s):  
Sergio A Gomes

Mitochondria are maternally inherited cellular organelles located in the cytoplasm of most eukaryotic cells. Mitochondrial diseases are a type of metabolic disorder, involving the respiratory chain under the control of both the mitochondrial DNA and nuclear DNA. In dogs, mitochondriopathies are considered rare, with few clinical syndromes having had their structural, biochemical and genetic basis identified. In this review, the basis for suspecting a mitochondrial disease clinically is summarised, with particular focus on mitochondrial encephalopathies, encephalomyelopathies and neuropathies. Recognisable confirmed mitochondriopathies including spongiform leukoencephalomyelopathy, Alaskan Husky encephalopathy, Leigh-like subacute necrotising encephalopathy and sensory ataxic neuropathy in the Golden Retriever are described in detail, alongside previously reported individual cases of presumptive mitochondriopathies of unknown origin. Genetic mutations reported in the literature are reviewed. A clear classification for mitochondrial diseases in veterinary medicine is lacking, and this review is the first to address this class of diseases specifically in dogs.

2021 ◽  
Vol 10 (6) ◽  
pp. 1249
Author(s):  
Daniele Orsucci ◽  
Elena Caldarazzo Ienco ◽  
Andrea Rossi ◽  
Gabriele Siciliano ◽  
Michelangelo Mancuso

In the last ten years, the knowledge of the genetic basis of mitochondrial diseases has significantly advanced. However, the vast phenotypic variability linked to mitochondrial disorders and the peculiar characteristics of their genetics make mitochondrial disorders a complex group of disorders. Although specific genetic alterations have been associated with some syndromic presentations, the genotype–phenotype relationship in mitochondrial disorders is complex (a single mutation can cause several clinical syndromes, while different genetic alterations can cause similar phenotypes). This review will revisit the most common syndromic pictures of mitochondrial disorders, from a clinical rather than a molecular perspective. We believe that the new phenotype definitions implemented by recent large multicenter studies, and revised here, may contribute to a more homogeneous patient categorization, which will be useful in future studies on natural history and clinical trials.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4790 ◽  
Author(s):  
Abhimanyu S. Ahuja

Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA), or possibly in the nuclear DNA (nDNA). The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.


2018 ◽  
Vol 46 (5) ◽  
pp. 1225-1238 ◽  
Author(s):  
Thomas Daniel Jackson ◽  
Catherine Sarah Palmer ◽  
Diana Stojanovski

Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.


2020 ◽  
pp. jclinpath-2020-207026
Author(s):  
Surita Meldau ◽  
Elizabeth Patricia Owen ◽  
Kashief Khan ◽  
Gillian Tracy Riordan

AimsMitochondrial diseases form one of the largest groups of inborn errors of metabolism. The birth prevalence is approximately 1/5000 in well-studied populations, but little has been reported from Sub-Saharan Africa. The aim of this study was to describe the genetics underlying mitochondrial disease in South Africa.MethodsAn audit was performed on all mitochondrial disease genetic testing performed in Cape Town, South Africa.ResultsOf 1614 samples tested for mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) variants in South Africa between 1994 and 2019, there were 155 (9.6 %) positive results. Pathogenic mtDNA variants accounted for 113 (73%)/155, from 96 families. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, 37 (33%)/113, Leber’s hereditary optic neuropathy, 26 (23%)/113, and single large mtDNA deletions, 22 (20%)/113, accounted for 76%. Thirty eight of 42 nDNA-positive results were homozygous for the MPV17 pathogenic variant c.106C>T (p.[Gln36Ter, Ser25Profs*49]) causing infantile neurohepatopathy, one of the largest homozygous groups reported in the literature. The other nDNA variants were in TAZ1, CPT2, BOLA3 and SERAC1. None were identified in SURF1, POLG or PDHA1.ConclusionsFinding a large group with a homozygous nuclear pathogenic variant emphasises the importance of looking for possible founder effects. The absence of other widely described pathogenic nDNA variants in this cohort may be due to reduced prevalence or insufficient testing. As advances in therapeutics develop, it is critical to develop diagnostic platforms on the African subcontinent so that population-specific genetic variations can be identified.


Open Heart ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. e001510
Author(s):  
Albert Zishen Lim ◽  
Daniel M Jones ◽  
Matthew G D Bates ◽  
Andrew M Schaefer ◽  
John O'Sullivan ◽  
...  

ObjectiveRegular cardiac surveillance is advocated for patients with primary mitochondrial DNA disease. However, there is limited information to guide clinical practice in mitochondrial conditions caused by nuclear DNA defects. We sought to determine the frequency and spectrum of cardiac abnormalities identified in adult mitochondrial disease originated from the nuclear genome.MethodsAdult patients with a genetically confirmed mitochondrial disease were identified and followed up at the national clinical service for mitochondrial disease in Newcastle upon Tyne, UK (January 2009 to December 2018). Case notes, molecular genetics reports, laboratory data and cardiac investigations, including serial electrocardiograms and echocardiograms, were reviewed.ResultsIn this cohort-based observational study, we included 146 adult patients (92 women) (mean age 53.6±18.7 years, 95% CI 50.6 to 56.7) with a mean follow-up duration of 7.9±5.1 years (95% CI 7.0 to 8.8). Eleven different nuclear genotypes were identified: TWNK, POLG, RRM2B, OPA1, GFER, YARS2, TYMP, ETFDH, SDHA, TRIT1 and AGK. Cardiac abnormalities were detected in 14 patients (9.6%). Seven of these patients (4.8%) had early-onset cardiac manifestations: hypertrophic cardiomyopathy required cardiac transplantation (AGK; n=2/2), left ventricular (LV) hypertrophy and bifascicular heart block (GFER; n=2/3) and mild LV dysfunction (GFER; n=1/3, YARS2; n=1/2, TWNK; n=1/41). The remaining seven patients had acquired heart disease most likely related to conventional cardiovascular risk factors and presented later in life (14.6±12.8 vs 55.1±8.9 years, p<0.0001).ConclusionsOur findings demonstrate that the risk of cardiac involvement is genotype specific, suggesting that routine cardiac screening is not indicated for most adult patients with nuclear gene-related mitochondrial disease.


FEBS Letters ◽  
2021 ◽  
Vol 595 (8) ◽  
pp. 1132-1158 ◽  
Author(s):  
Mirjana Gusic ◽  
Holger Prokisch

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tongling Liufu ◽  
Zhaoxia Wang

AbstractMitochondrial diseases are predominantly caused by mutations of mitochondrial or nuclear DNA, resulting in multisystem defects. Current treatments are largely supportive, and the disorders progress relentlessly. Nutritional supplements, pharmacological agents and physical therapies have been used in different clinical trials, but the efficacy of these interventions need to be further evaluated. Several recent reviews discussed some of the interventions but ignored bias in those trials. This review was conducted to discover new studies and grade the original studies for potential bias with revised Cochrane Collaboration guidelines. We focused on seven published studies and three unpublished studies; eight of these studies showed improvement in outcome measurements. In particular, two of the interventions have been tested in studies with strict design, which we believe deserve further clinical trials with a large sample. Additionally, allotopic expression of the ND4 subunit seemed to be an effective new treatment for patients with Leber hereditary optic neuropathy.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 532
Author(s):  
Dorota Wesół-Kucharska ◽  
Dariusz Rokicki ◽  
Aleksandra Jezela-Stanek

Mitochondrial diseases are a heterogeneous group of diseases resulting from energy deficit and reduced adenosine triphosphate (ATP) production due to impaired oxidative phosphorylation. The manifestation of mitochondrial disease is usually multi-organ. Epilepsy is one of the most common manifestations of diseases resulting from mitochondrial dysfunction, especially in children. The onset of epilepsy is associated with poor prognosis, while its treatment is very challenging, which further adversely affects the course of these disorders. Fortunately, our knowledge of mitochondrial diseases is still growing, which gives hope for patients to improve their condition in the future. The paper presents the pathophysiology, clinical picture and treatment options for epilepsy in patients with mitochondrial disease.


2021 ◽  
Vol 22 (2) ◽  
pp. 551
Author(s):  
Luis Sendra ◽  
Alfredo García-Mares ◽  
María José Herrero ◽  
Salvador F. Aliño

Background: Mitochondrial DNA (mtDNA) diseases are a group of maternally inherited genetic disorders caused by a lack of energy production. Currently, mtDNA diseases have a poor prognosis and no known cure. The chance to have unaffected offspring with a genetic link is important for the affected families, and mitochondrial replacement techniques (MRTs) allow them to do so. MRTs consist of transferring the nuclear DNA from an oocyte with pathogenic mtDNA to an enucleated donor oocyte without pathogenic mtDNA. This paper aims to determine the efficacy, associated risks, and main ethical and legal issues related to MRTs. Methods: A bibliographic review was performed on the MEDLINE and Web of Science databases, along with searches for related clinical trials and news. Results: A total of 48 publications were included for review. Five MRT procedures were identified and their efficacy was compared. Three main risks associated with MRTs were discussed, and the ethical views and legal position of MRTs were reviewed. Conclusions: MRTs are an effective approach to minimizing the risk of transmitting mtDNA diseases, but they do not remove it entirely. Global legal regulation of MRTs is required.


ESC CardioMed ◽  
2018 ◽  
pp. 1528-1530
Author(s):  
Denis Duboc

Mitochondria are responsible for energy production in most eukaryotic cells. Each cell contains at least one mitochondrion and every mitochondrion contains two to ten copies of a circular DNA molecule (mitochondrial DNA or mtDNA). Cardiomyocytes contain approximately 10,000 mtDNA copies. MtDNA is composed of around 16,500 base pairs and 37 genes encoding 13 subunits of the respiratory chain complexes I, III, IV, and V, 22 mitochondrial tRNAs and 2 rRNAs. With each cell division, mitochondria and mtDNA are randomly distributed to daughter cells. In humans, mitochondria are inherited exclusively from the mother. In healthy people mtDNA copies are usually identical at birth (homoplasmy) but with ageing, mtDNA is particularly prone to somatic mutation because, unlike nuclear DNA, it is continuously replicated, even in non-dividing tissues such as myocardium. This can lead to the propagation of somatic mutations within single cells by a process called clonal expansion. In addition, mtDNA lacks an extensive DNA repair mechanism.


Sign in / Sign up

Export Citation Format

Share Document