CONTACT RATIO OPTIMIZATION of POWDER METAL GEARS: STRESS and TRANSMISSION ERROR REDUCTION

Author(s):  
Alexander KAPELEVICH ◽  
Anders FLODIN
Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2020 ◽  
Vol 10 (12) ◽  
pp. 4403
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Lan Liu

As one of the long period gear errors, the effects of random cumulative pitch deviations on mesh excitations and vibration responses of a helical geared rotor system (HGRS) are investigated. The long-period mesh stiffness (LPMS), static transmission error (STE), as well as composite mesh error (CMS), and load distributions of helical gears are calculated using an enhanced loaded tooth contact analysis (LTCA) model. A dynamic model with multi degrees of freedom (DOF) is employed to predict the vibration responses of HGRS. Mesh excitations and vibration responses analysis of unmodified HGRS are conducted in consideration of random cumulative pitch deviations. The results indicate that random cumulative pitch deviations have significant effects on mesh excitations and vibration responses of HGRS. The curve shapes of STE and CMS become irregular when the random characteristic of cumulative pitch deviations is considered, and the appearance of partial contact loss in some mesh cycles leads to decreased LPMS when load torque is relatively low. Vibration modulation phenomenon can be observed in dynamic responses of HGRS. In relatively light load conditions, the amplitudes of sideband frequencies become larger than that of mesh frequency and its harmonics (MFIHs) because of relatively high contact ratio. The influences of random cumulative pitch deviations on the vibration responses of modified HGRS are also discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Changbin Dong ◽  
Yongping Liu ◽  
Yongqiao Wei ◽  
Beibei Yun ◽  
Dawei Li ◽  
...  

As an important parameter to distinguish noncircular gear from cylindrical gear, eccentricity is very important for the meshing characteristics and transmission error of noncircular gear. In order to study the transmission characteristics of the elliptic gear, a pair of elliptic gear in the reversing device of a new type of drum pumping was taken as the research object. Based on the analysis of the transmission pressure angle and instantaneous contact ratio of the elliptic gear, the eccentricity error was introduced into the analysis model of transmission error. The influences of the eccentricity on the transmission pressure angle, instantaneous contact ratio, and transmission error were analyzed, and the analysis accuracy is verified by the finite element method. The results show that the eccentricity has a great influence on the transmission pressure angle, instantaneous contact ratio, and transmission error of the elliptic gear, and the eccentricity error has a significant influence on the transmission error. In order to ensure the normal meshing condition of the elliptic gear, the eccentricity should be less than 0.7071, and the maximum instantaneous contact ratio is 1.809. The research results can provide some guidance for the following noncircular spur gear transmission test and transmission error research.


Author(s):  
Yanming Mu ◽  
Zongde Fang

This paper presents a new method to design a seventh-order transmission error for high contact ratio spiral bevel gears by the modified curvature motion method to reach the purpose of reducing or eliminating gear vibration and noise. In this paper, firstly, based on the predesigned seventh-order transmission error, the polynomial coefficients of transmission error curve can be obtained. Secondly, a method named modified curvature motion method is used to generate the spiral bevel gear with the predesigned transmission error. Lastly, based on TCA and LTCA, we verify the feasibility of the modified curvature motion method to generate spiral bevel gear with seventh-order transmission error, and the meshing impact of gear set with the seventh-order and second-order function of transmission error is analyzed and compared. The results of a numerical example show that the seventh-order transmission error acquired by the modified curvature motion method can effectively reduce the meshing impact of spiral bevel gears. The tooth modification method and meshing impact analysis method can serve as a basis for developing a general technique of flank modification for spiral bevel gears.


Author(s):  
R. G. Munro1 ◽  
D Palmer ◽  
L Morrish

A method is presented that allows the accurate measurement of the tooth pair stiffness of a pair of spur gears. The method reveals the stiffness behaviour throughout the full length of the normal path of contact and also into the extended contact region when tooth corner contact occurs. The method makes use of the properties of transmission error plots for mean and alternating components over a range of tooth loads (Harris maps). It avoids the usual problem when measuring tooth deflections that deflections of other test rig components are difficult to eliminate. Also included are predicted Harris maps for a pair of high contact ratio spur gears, showing the effects of various simplifying assumptions, together with a measured map.


Author(s):  
Colin-Yann Jacquin ◽  
Michèle Guingand ◽  
Jean-Pierre de Vaujany ◽  
Daniel Play

Abstract This paper presents an analytical method developed to design and study the tooth geometry and contact characteristics of helical face gears. The tooth geometry is first defined while simulating the meshing of the face gear with the shaper used to cut it. A second meshing simulation is then performed between the face gear and the meshing pinion to determine some characteristics of kinematics, i.e. exact location of contact points, theoretical contact ratio, kinematics transmission error. The computation method is very general and allows to study several types of face gears : crossed axes or offset, varying shaft angle, spur or helical pinion. Cutting and assembling errors are also included in the simulations. The study has shown the influence of the different errors on the kinematics characteristics. Relative sensibility of helical face gears under various misalignments has been also established.


Author(s):  
Nihat Yıldırım ◽  
Hakan I˙s¸c¸i ◽  
Abdullah Akpolat

Aerospace applications require special procedures for component design and manufacturing. Spur gears of different designs, because of their simpler geometries, are used in vital units-transmissions of helicopters and alike aerospace vehicles. In this study, performances of various profile designs of previously researched low and high contact ratio spur gears with some realistic design parameters are studied. Effects of the realistic parameters of variable tooth pair stiffness, relief shape, and adjacent pitch error on Transmission Error (TE), tooth loads and root stresses are presented; composition of these parameters determines the efficiency of the gearbox assembly. Detail of minimization of tooth root stress through optimized/proper design of relief is described. More comprehensive comparison of the gear tooth profile design cases is done to be able to guide aerospace transmission designers for practical applications with realistic parameters for each of the design cases. A preference order is done among the design cases, depending on effect of some design parameters on the results such as tooth loads, tooth root stresses, TE curves and peak-to-peak TE values.


Author(s):  
N Yildirim ◽  
R G Munro

This is the first of a series of papers on the design of the tooth profile relief of both low and high contact ratio spur gears and its effects on transmission error (TE) and tooth loads. A systematic approach to profile relief design is introduced. The process of profile relief analysis is based on a number of simplifying assumptions to ease the understanding of the relief design. Useful relief cases determined during the simplified analysis are further investigated, with realistic parameter values such as variable stiffness, manufacturing tolerances and so on, in other papers of the series. Experimental validation of the cases proven to be good are also given in forthcoming papers. In the present paper, the systematic approach is applied to low contact ratio (LCR) spur gears first with some design regions and to high contact ratio (HCR) spur gears with some new and promising design regions and rules. Several smooth transmission error curves at different loads are shown to be possible for the relief designed, hence allowing a range of loads with uniform motion transfer. The advantages of HCRG over LCRG in terms of smooth TE curves and tooth load values are noted.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Edzrol Niza Mohamad ◽  
Masaharu Komori ◽  
Hiroaki Murakami ◽  
Aizoh Kubo ◽  
Suping Fang

The vibration/noise of power transmission gears is a serious problem for vehicles including automobiles, and therefore many studies on gear vibration have been reported. These studies, however, were carried out by investigation using numerical simulations in which gears with specific dimensions and tooth flank modifications under specific loading were considered. Therefore, the general characteristics of the transmission error of gears have not been clarified theoretically. In this report, a general model for the tooth meshing of gears is proposed; in which a quasi-infinite elastic model composed of springs with stiffness peculiar to the gear is incorporated. The transmission error of gears is formulated by theoretical equations. An investigation on the factors affecting the general characteristics of transmission error is accomplished using the formulated equations. The qualitative characteristic of the transmission error of gears with convex tooth flank form deviation is determined by the actual contact ratio and qualitative elements of gears, i.e., tooth flank form deviation and the distribution of stiffness. Even if the amplitude of torque, the amount of tooth flank form deviation, and other quantitative elements are not determined, the qualitative characteristic of transmission error can be derived. The peak-to-peak value of transmission error increases proportionately to the amount of tooth flank form deviation.


Sign in / Sign up

Export Citation Format

Share Document