Toward large-scale tactile sensor implementation: array of flexible tactile sensor using spiral inductors and magnetorheological elastomer sheet

Author(s):  
Takumi KAWASETSU ◽  
Takato HORII ◽  
Hisashi ISHIHARA ◽  
Minoru ASADA
Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


2012 ◽  
Vol 1 (33) ◽  
pp. 74 ◽  
Author(s):  
Dimitris Stagonas ◽  
Gerald Muller ◽  
Karunya Ramachandran ◽  
Stefan Schimmels ◽  
Alec Dane

Although existing knowledge on the vertical distribution of impact pressures on sea-dikes is well established only very little is known with respect to their horizontal distribution. A collaboration developed between the University of Southampton, Uk and FZK, Hannover looks in more detail at the distribution of pressures induced by waves breaking on the face of a sea-dike. For this, 2D large scale experiments with waves breaking on a 1:3 sea dike were conducted but instead of pressure transducers a tactile pressure sensor was used to map the impact pressures. Such sensors were initially used with breaking waves in the University of Southampton and their use for large scale experiments was attempted here for the first time. In the current paper the calibration and application of the tactile sensor for experiments involving up to 1m high and 8sec long waves are initially described. Preliminary results illustrating the simultaneous distribution of impact induced pressures over an area of 426.7x487.7mm are then presented. Based on these pressure maps the vertical and horizontal location of maximum breaking wave induced pressures is also deduced.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 162 ◽  
Author(s):  
Jinhua Ye ◽  
Zhengkang Lin ◽  
Jinyan You ◽  
Shuheng Huang ◽  
Haibin Wu

In the field of safety and communication of human-robot interaction (HRI), using large-scale electronic skin will be the tendency in the future. The force-sensitive piezoresistive material is the key for piezoresistive electronic skin. In this paper, a non-array large scale piezoresistive tactile sensor and its corresponding calibration methods were presented. Because of the creep inconsistency of large scale piezoresistive material, a creep tracking compensation method based on K-means clustering and fuzzy pattern recognition was proposed to improve the detection accuracy. With the compensated data, the inconsistency and nonlinearity of the sensor was calibrated. The calibration process was divided into two parts. The hierarchical clustering algorithm was utilized firstly to classify and fuse piezoresistive property of different regions over the whole sensor. Then, combining the position information, the force detection model was constructed by Back-Propagation (BP) neural network. At last, a novel flexible tactile sensor for detecting contact position and force was designed as an example and tested after being calibrated. The experimental results showed that the calibration methods proposed were effective in detecting force, and the detection accuracy was improved.


2020 ◽  
Vol 6 (46) ◽  
pp. eabd7795
Author(s):  
Hongseok Oh ◽  
Gyu-Chul Yi ◽  
Michael Yip ◽  
Shadi A. Dayeh

We report large-scale and multiplexed tactile sensors with submillimeter-scale shear sensation and autonomous and real-time closed-loop grip adjustment. We leveraged dual-gate piezoelectric zinc oxide (ZnO) thin-film transistors (TFTs) fabricated on flexible substrates to record normal and shear forces with high sensitivity over a broad range of forces. An individual ZnO TFT can intrinsically sense, amplify, and multiplex force signals, allowing ease of scalability for multiplexing from hundreds of elements with 100-μm spatial and sub–10-ms temporal resolutions. Notably, exclusive feedback from the tactile sensor array enabled rapid adjustment of grip force to slip, enabling the direct autonomous robotic tactile perception with a single modality. For biomedical and implantable device applications, pulse sensing and underwater flow detection were demonstrated. This robust technology, with its reproducible and reliable performance, can be immediately translated for use in industrial and surgical robotics, neuroprosthetics, implantables, and beyond.


Robotica ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 343-351 ◽  
Author(s):  
R.E. Ellis ◽  
S.R. Ganeshan ◽  
S.J. Lederman

SUMMARYTraditionally, tactile sensors have been designed using compliant, rubber-like materials; when such a sensitized gripper grasps or otherwise manipulates an object, the normal strain deformation in the compliant material is sampled. The resulting information can be used to deduce simple local geometry of the contact, but the transduction process does not typically permit use of the individual strains in determining large-scale properties of the object (e.g., the inertia). Measurements of inertial parameters of grasped objects require accurate, low-hysteresis transduction that few tactile sensors currently provide.An alternative is to work from the task specification, and determine the tactile information that is necessary to accomplish the task. Here, we consider how to sense the length and mass of a uniform object that is gripped in a gravitational field, and show the design and assessment of a new kind of tactile sensor that is based on the theory of the deformation of thin plates. Features of this design include its potentially rugged realization, and its high-accuracy measurement that is more typical of force sensors than of tactile sensors.


2018 ◽  
Vol 18 (14) ◽  
pp. 5834-5841 ◽  
Author(s):  
Takumi Kawasetsu ◽  
Takato Horii ◽  
Hisashi Ishihara ◽  
Minoru Asada

2018 ◽  
Vol 5 (21) ◽  
pp. 1801061 ◽  
Author(s):  
Zhihao Huo ◽  
Yiyao Peng ◽  
Yufei Zhang ◽  
Guoyun Gao ◽  
Bensong Wan ◽  
...  

Robotica ◽  
2018 ◽  
Vol 37 (4) ◽  
pp. 756-777 ◽  
Author(s):  
Giovanni Gerardo Muscolo ◽  
Giacomo Moretti ◽  
Giorgio Cannata

SummaryThe paper presents physical modeling, design, simulations, and experimentation on a novel Soft Underwater Artificial Skin (SUAS) used as tactile sensor. The SUAS functions as an electrostatic capacitive sensor, and it is composed of a hyperelastic membrane used as external cover and oil inside it used to compensate the marine pressure. Simulation has been performed studying and modeling the behavior of the external interface of the SUAS in contact with external concentrated loads in marine environment. Experiments on the external and internal components of the SUAS have been done using two different conductive layers in oil. A first prototype has been realized using a 3D printer. The results of the paper underline how the soft materials permit better adhesion of the conductive layer to the transducers of the SUAS obtaining higher capacitance. The results here presented confirmed the first hypotheses presented in a last work and opened new ways in the large-scale underwater tactile sensor design and development. The investigations are performed in collaboration with a national Italian project named MARIS, regarding the possible extension to the underwater field of the technologies developed within the European project ROBOSKIN.


Sign in / Sign up

Export Citation Format

Share Document