B222 Cooling on High Superheated Surface by Using Spray Nozzle : Influence of Droplet Size and Droplet Velocity

2015 ◽  
Vol 2015 (0) ◽  
pp. _B222-1_-_B222-2_
Author(s):  
Yoshiaki Hasebe ◽  
Hiroyasu Ohtake ◽  
Koji Hasegawa
Author(s):  
Maohua Xiao ◽  
Yuanfang Zhao ◽  
Zhenmin Sun ◽  
Chaohui Liu ◽  
Tianpeng Zhang

Background: There are drift and volatilization of the droplets produced by the plant protection Unmanned Aerial Vehicle (UAV) under the influence of external wind speed and its flight speed. Objective: It studied the atomization characteristics of its fan-shaped atomizing nozzle under different inlet pressures and inner cavity diameters. Methods: For the start, the Realizable k-ε turbulence model, DPM discrete phase model and TAB breakup model are used to make a numerical simulation of the spray process of the nozzle. Then, the SIMPLE algorithm is used to obtain the droplet size distribution diagram of the nozzle atomization field. At last, the related test methods are used to study its atomization performance, and the changes of atomization angle and droplet velocity under different inlet pressures and inner cavity diameters and the distribution of droplet size are discussed. Results: The research results show that under the same inner cavity diameter, as the inlet pressure increases, the spray cone angle of the nozzle and the droplet velocity at the same distance from the nozzle increase. As the distance from the nozzle increases, the droplet velocity decreases gradually, the droplet size distribution moves to the direction of small diameter, and the droplets in the anti-drift droplet size area increase. Under the same inlet pressure, as the diameter of the inner cavity increases, the spray cone angle first increases and then decreases, and the droplet velocity at the same distance from the nozzle increases. As the distance from the nozzle increases, the droplet velocity decreases gradually, the droplet size distribution moves to the direction of large diameter, and the large size droplets increase, which cannot meet the anti-drift volatilization effect. Conclusion: Under the parameter set in this study, when the inlet pressure is 0.6MPa and the inner cavity diameter is 2mm, the atomization result is the best.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 676
Author(s):  
Lingzhen Kong ◽  
Tian Lan ◽  
Jiaqing Chen ◽  
Kuisheng Wang ◽  
Huan Sun

The breakup processes and droplet characteristics of a liquid jet injected into a low-speed air crossflow in the finite space were experimentally investigated. The liquid jet breakup processes were recorded by high-speed photography, and phase-Doppler anemometry (PDA) was employed to measure the droplet sizes and droplet velocities. Through the instantaneous image observation, the liquid jet breakup mode could be divided into bump breakup, arcade breakup and bag breakup modes, and the experimental regime map of primary breakup processes was summarized. The transition boundaries between different breakup modes were found. The gas Weber number (Weg) could be considered as the most sensitive dimensionless parameter for the breakup mode. There was a Weg transition point, and droplet size distribution was able to change from the oblique-I-type to the C-type with an increase in Weg. The liquid jet Weber number (Wej) had little effect on droplet size distribution, and droplet size was in the range of 50–150 μm. If Weg > 7.55, the atomization efficiency would be very considerable. Droplet velocity increased significantly with an increase in Weg of the air crossflow, but the change in droplet velocity was not obvious with the increase in Wej. Weg had a decisive effect on the droplet velocity distribution in the outlet section of test tube.


Author(s):  
Joshua A. McGinty ◽  
Gaylon D. Morgan ◽  
Peter A. Dotray ◽  
Paul A. Baumann

Aims: Determine the droplet size spectra of agricultural sprays as affected by herbicide formulations, spray nozzle designs, and operating pressures. Place and Duration of Study: This study was conducted in April 2014 at the United States Department of Agriculture Agricultural Research Service Aerial Application Technology Research Unit Facility in College Station, Texas. Methodology: The spray droplet size spectra of six herbicide formulations as well as water alone and water with nonionic surfactant were evaluated in a low-speed wind tunnel. These spray solutions were conducted with five different flat-fan spray nozzle designs, producing a wide range of spray droplet sizes. The wind tunnel was equipped with a laser diffraction sensor to analyze spray droplet size. All combinations of spray solution and nozzle were operated at 207 and 414 kPa and replicated three times. Results: Many differences in droplet size spectra were detected among the spray solutions, nozzle designs, and pressures tested. Solutions of Liberty 280 SL exhibited the smallest median droplet size and the greatest proportion of spray volume contained in droplets 100 µm or less in size.  Solutions of Enlist Duo resulted in smaller median droplet size than many of the solutions tested, but also exhibited some of the smallest production of fine spray droplets. Median droplet size was found to vary greatly among nozzle designs, with the greatest droplet size and smallest drift-prone fine droplet production observed with air-inclusion designs utilizing a pre-orifice. Increasing the operating pressure from 207 to 414 kPa resulted in a decrease in median droplet size and an increase in the production of droplets 100 µm or less in size. Conclusion: Herbicide formulations and spray nozzle designs tested varied widely in droplet size spectra and thus the potential for spray drift. Increasing operating pressure resulted in decreased droplet size and an increase in the production of drift-prone droplets. Additionally, median droplet size alone should not be used to compare spray drift potential among spray solutions but should include relative span and V100 values to better predict the potential for spray drift due to drift-prone spray droplets.


2012 ◽  
Vol 52 (4) ◽  
pp. 447-457 ◽  
Author(s):  
Bradley Keith Fritz ◽  
Wesley Clint Hoffmann ◽  
Zbigniew Czaczyk ◽  
William Bagley ◽  
Greg Kruger ◽  
...  

Abstract An increasing number of spray nozzle and agrochemical manufacturers are incorporating droplet size measurements into both research and development. Each laboratory invariably has their own sampling setup and procedures. This is particularly true about measurement distance from the nozzle and concurrent airflow velocities. Both have been shown to significantly impact results from laser diffraction instruments. These differences can be overcome through the use of standardized reference nozzles and relative spray classification categories. Sets of references nozzles, which defined a set of classification category thresholds, were evaluated for droplet size under three concurrent air flow velocities (0.7, 3.1 and 6.7 m/s). There were significant, though numerically small, differences in the droplet size data between identical reference nozzles. The resulting droplet size data were used to categorize a number of additional spray nozzles at multiple pressure and air flow velocities. This was done to determine if similar classifications were given across the different airspeeds. Generally, droplet size classifications agreed for all airspeeds, with the few that did not, only differing by one category. When reporting droplet size data, it is critical that data generated from a set of reference nozzles also be presented as a means of providing a relative frame of reference.


Author(s):  
Deepak Kumar ◽  
Tushar Sikroria ◽  
Kushari A ◽  
Pramod Kumar ◽  
Sriganesh G

In Fluidized Bed Catalytic Cracking (FCC) process, hydrocarbon feed undergoes vapour phase cracking in presence of hot regenerated catalyst to produce valuable products like LPG, Gasoline and Diesel. FCC feed injection system is most critical hardware component of FCC unit in order to get desired product yield by minimizing the undesirable dry gas and coke yield. Typically, twin-fluid nozzles (hydrocarbon and stream) are used to atomize the feed. In the present study, a twin-fluid injector, with an internal impactor to minimize the droplet size and velocity, is designed, developed and characterized. The performance of the feeding injector was evaluated using water and air as operating fluids and the droplet size and velocity were measured 150 mm downstream of the injector tip using a PDPA system for different water and air flow rates. The average droplet size (D32) showed an increase while the droplet velocity remained almost constant with the increase in the liquid flow rate for a given flow rate of air, consistent with the increase in droplet size with decreasing air-liquid ratio for twin–fluid atomizers. But, for a given liquid flow rate, the droplet SMD decreased and the droplet velocity increased with increasing airflow rate, which can be attributed to the increase in overall kinetic energy due to the increase in air flow rate. The flow rate of liquid was seen to be independent of air flow rate unlike conventional twin-fluid atomizers. The droplet size was found to be a function of ALR and the local volume flux of the droplets was found to be a function of the liquid flow rate.


2020 ◽  
Vol 34 (4) ◽  
pp. 520-527
Author(s):  
Bruno C. Vieira ◽  
Thomas R. Butts ◽  
Andre O. Rodrigues ◽  
Jerome J. Schleier ◽  
Bradley K. Fritz ◽  
...  

AbstractThe introduction of 2,4-D–resistant soybean and cotton provided growers a new POST active ingredient to include in weed management programs. The technology raises concerns regarding potential 2,4-D off-target movement to sensitive vegetation, and spray droplet size is the primary management factor focused on to reduce spray particle drift. The objective of this study was to investigate the droplet size distribution, droplet velocity, and particle drift potential of glyphosate plus 2,4-D choline pre-mixture (Enlist Duo®) applications with two commonly used venturi nozzles in a low-speed wind tunnel. Applications with the TDXL11004 nozzle had larger DV0.1 (291 µm), DV0.5 (544 µm), and DV0.9 (825 µm) values compared with the AIXR11004 nozzle (250, 464, and 709 µm, respectively), and slower average droplet velocity (8.1 m s−1) compared with the AIXR11004 nozzle (9.1 m s−1). Nozzle type had no influence on drift deposition (P = 0.65), drift coverage (P = 0.84), and soybean biomass reduction (P = 0.76). Although the TDXL11004 nozzle had larger spray droplet size, the slower spray droplet velocity could have influenced the nozzle particle drift potential. As a result, both TDXL11004 and AIXR11004 nozzles had similar spray drift potential. Further studies are necessary to understand the impact of droplet velocity on drift potential at field scale and test how different tank solutions, sprayer configurations, and environmental conditions could influence the droplet size and velocity dynamics and consequent drift potential in pesticide applications.


2008 ◽  
Author(s):  
A. J. Pertzborn ◽  
W. C. Smith

Successful development of CFD models for droplet flows is aided by knowledge of the droplet size distribution in the flow, but current instrumentation for measuring droplet size is limited. In an attempt to improve the quality of data collected, fiber optic probe (FOP) technology was investigated. A spray nozzle injected water droplets into an air stream to create a high void fraction droplet flow. Measurements were acquired with the spray nozzle at two different locations upstream of the FOP position. Mean droplet velocity measurements were acquired using laser Doppler velocimetry (LDV) at the FOP position. The droplet size distribution at the probe location was determined by using both the FOP and LDV measurements. The initial results indicate that FOP technology can successfully measure the droplet size distribution in a high void fraction air/water flow and it should be further developed for this application.


Author(s):  
N. J. Regan ◽  
N. R. Atkins ◽  
C. A. Long ◽  
P. R. N. Childs ◽  
P. S. Hutcheson ◽  
...  

The flow in the secondary air system of a gas turbine engine passes over numerous oil supply and scavenge pipes and a fracture in such a pipe will cause a jet of oil to be ejected as a spray. This spray will disperse in the surrounding flow. Accurate and reliable numerical modelling of these sprays presents significant problems due in part to their complexity, but also the lack of experimental data available for model validation. This paper describes the design, manufacture, testing and results from an experimental test rig aimed at spray characterisation. The sprays considered were produced through a round sharp edged nozzle with a 0.57 mm diameter and a length to diameter ratio of 1.61. The spray was introduced normal to the cross flow. Phase Doppler Anemometry was used to determine droplet size and velocity for Weber numbers within the range of 13 < Weg < 580 and Momentum Flux Ratio within the range of 0.8 < q < 136, resulting in 19 different spray fields. Each of these spray fields has been characterised at three axial locations. Contours of droplet size, mass flux distribution, axial droplet velocity and transverse droplet velocity are presented. In addition, a pulsed laser sheet and CCD camera were used to analyse the jet behaviour in terms of break up length and jet trajectory.


Sign in / Sign up

Export Citation Format

Share Document