scholarly journals Effect of Short-Term Endurance Exercise on COX IV and PGC-1a mRNA Expression Levels in Rat Skeletal Muscle

2019 ◽  
Vol 12 (3) ◽  
pp. 1309-1316 ◽  
Author(s):  
Nova Sylviana ◽  
Christina Natalia ◽  
Hanna Goenawan ◽  
Yuni Susanti Pratiwi ◽  
Iwan Setiawan ◽  
...  

Endurance exercise induces specific skeletal muscle adaptation by increasing mitochondrial oxidative phosphorylation eficiency and mitochondrial biogenesis. Many previous studies suggesting both PGC-1a and COX IV as a potential biomarker of skeletal muscle adaptation induced by exercise. But most of them only studied the effect of long-term endurance exercise, whereas the effect of short-term exercise remains unclear. To investigate short-term physiological adaptation induced by endurance exercise on expression of COX IV and PGC-1a mRNA in rat skeletal muscle. Twenty healthy male Wistar rats (Rattus norvegicus) aged 10-11 weeks old were used in this experiment. Rats were randomly assigned into 4 groups based on the time period of exercise: 1) control (C; n=5), 2) three days of exercise (E3; n=5), 3) six days of exercise (E6; n=5), 4) fifteen days of exercise (E15; n=5). The exercise groups were run at 20m/s for 30 minutes on the rat treadmill and the stationary control group was only placed inside treadmill with the machines turned off. On the last day of exercise, the rats were sacrificed then RNA from skeletal muscle was extracted. COX IV and PGC-1a mRNA expressions were measured by Reverse Transcriptase PCR. The results showed that there were statistically significant differences of PGC-1a mRNA expression levels in both soleus (F(3,16)=3.740, ps=0.033) and gastrocnemius (F(3,16)=3.969, pg=0.027) muscles. The COX IV mRNA expression levels in soleus (F(3,16)=3.801, ps=0.031) and gastrocnemius (F(3,16)=5.429, ps=0.009) muscles were also significantly increased. There were significant increases of PGC-1a and COX IV expressions in fifteen days of exercise group compared to control group in both muscles. Short-term endurance exercise induced mitochondrial biogenesis marker and mitochondrial activity marker by increasing the PGC-1a and COX IV mRNA expression levels in rat skeletal muscle significantly following the time periods of exercise.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 729 ◽  
Author(s):  
Keiichi Koshinaka ◽  
Asuka Honda ◽  
Hiroyuki Masuda ◽  
Akiko Sato

The purpose of this study was to evaluate the effect of chronic quercetin treatment on mitochondrial biogenesis, endurance exercise performance and activation levels of AMP-activated protein kinase (AMPK) in rat skeletal muscle. Rats were assigned to a control or quercetin group and were fed for 7 days. Rats treated with quercetin showed no changes in the protein levels of citrate synthase or cytochrome C oxidase IV or those of sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1α or phosphorylated AMPK. After endurance swimming exercise, quercetin-treated rats demonstrated no differences in blood and muscle lactate levels or glycogen utilization speed compared to control rats. These results indicate that quercetin treatment does not stimulate mitochondrial biogenesis in skeletal muscle and does not influence metabolism in a way that might enhance endurance exercise capacity. On the other hand, the AMPK phosphorylation level immediately after exercise was significantly lower in quercetin-treated muscles, suggesting that quercetin treatment might provide a disadvantage to muscle adaptation when administered with exercise training. The molecular results of this study indicate that quercetin treatment may not be advantageous for improving endurance exercise performance, at least after high-dose and short-term therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yukiko Shiraki ◽  
Jun Shoji ◽  
Noriko Inada

Purpose. This study aimed to evaluate the clinical efficacy of using expression levels ofCCL24(eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC).Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All subjects underwent modified impression cytology and specimens were obtained from the upper tarsal conjunctiva. Expression levels ofCCL24(eotaxin-2) mRNA on the ocular surface were determined using real-time reverse transcription polymerase chain reaction.Results. The VKC group was divided into two subgroups, depending on the clinical score: the active stage subgroup with 100 points or more of clinical scores and the stable stage subgroup with 100 points or less.CCL24(eotaxin-2) mRNA expression levels in the active VKC/AKC stage subgroup were significantly higher than those in the stable VKC/AKC subgroup and the control group. Clinical scores correlated significantly withCCL24(eotaxin-2) mRNA expression levels in the VKC group.Conclusions.CCL24(eotaxin-2) mRNA expression levels on the ocular surface are a useful biomarker for clinical severity of VKC/AKC.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3847-3847 ◽  
Author(s):  
Yunfeng Cheng ◽  
Shanhua Zou ◽  
Feng Li

Abstract Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by platelet destruction resulting from autoantibodies against self-antigens and T-cell mediated cytotoxicity. Toll-like receptors (TLRs) are pattern recognition receptors important in mediating the immune response and their activation can lead to production of cytokines. Recent data suggest that TLR2 and TLR4 are crucial for the production of inflammatory cytokines and play central role in autoimmune diseases, yet little is known about their roles in ITP. Here we examined the gene expressions of TLR2 and TLR4 in ITP patients. We hypothesize that significant differences will exist between pre-treatment and post-treatment in ITP patients with similar changes reflected in the plasma concentration of cytokines. Total RNA was extracted from mononuclear cells obtained from 12 ITP patients and 15 healthy subjects. TLR2 and TLR4 mRNA expression levels were analyzed using a quantitative real-time PCR method and their protein expressions were validated by western blot. Plasma concentrations of cytokines IL-2, IFN-γ and TNF-α were measured by ELISA. Correlation analyses were carried out between the mRNA expression levels of TLR2 or TLR4 and the plasma levels of IL-2, IFN-γ and TNF-α. The gene expression of TLR2 and TLR4 were significantly increased in ITP patients comparing to healthy control group (p < 0.05 and p < 0.01, respectively). In addition their mRNA expression levels were decreased back into normal range after remission in 8 patients (p > 0.05, compared to healthy control group). Significantly positive correlations were found between the TLR2 mRNA expression level and the plasma concentration of IFN-γ or TNF-α (R = 0.75, p < 0.05; R = 0.83, p < 0.05, respectively). Changes in the gene expression of TLR4 and in the plasma concentration of IFN-γ or TNF-α were also significantly correlated (R = 0.82, p < 0.05; R = 0.88, p < 0.05, respectively). Directional changes in TLR2 / TLR4 and IFN-γ /TNF-α expression were concordant. However, there was no correlation found between TLR2 / TLR4 and IL-2. Differences in TLR2 and TLR4 expression strongly correlated with changes in IFN-γ and TNF-α suggest that the increased gene expressions of TLR2 and TLR4 in ITP patients may contribute to the pathophysiological progression of this disease by increasing the secretion of IFN-γ and TNF-α. Additional studies need to be performed to further clarify the role of TLRs -cytokines pathway in ITP.


Author(s):  
Liushu Jia ◽  
Bianhua Zhou ◽  
Hongwei Wang ◽  
Fan Yang ◽  
Guoyong Wang ◽  
...  

To explore the effect of Eimeria tenella infection on the cytokines gene expression and IgA production in the spleen of chickens, the morphological characteristics of the spleen were observed through optical and transmission electron microscopy. The IgA production was determined through immunohistochemistry. The mRNA expression levels of splenic cytokines were detected through real-time PCR. Compared to the control group, along with the infection of E. tenella, the splenic lymphocytes exhibited irregular and cracked membranes, mitochondria swelled even vacuolization, the IgA expression in spleen tissue was decreased by 55.57% (p lessthan 0.01). Likewise, the mRNA expression levels of IL-2 and IL-1â decreased by 40% (plessthan 0.01) and 43% p lessthan 0.05), respectively. By contrast, the IL-6, IFN-g and IL-10 levels increased by 158% (p lessthan 0.01), 464% (p lessthan 0.05) and 379% p lessthan 0.01), respectively. These results indicated that the spleen implement an important function in the antagonism of E. tenella, which suggest a new strategy to control coccidiosis by improving the peripheral immunity of chickens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Azmat Rozjan ◽  
Weibi Shan ◽  
Qiaoling Yao

ObjectiveThis study aims to investigate whether hypoxia-inducible factor 1α (HIF1α) in the neurons of the mediobasal hypothalamus is involved in the regulation of body weight, glucose, and lipid metabolism in mice and to explore the underlying molecular mechanisms.MethodsHIF1αflox/flox mice were used. The adeno-associated virus that contained either cre, GFP and syn, or GFP and syn (controls) was injected into the mediobasal hypothalamus to selectively knock out HIF1α in the neurons of the mediobasal hypothalamus. The body weight and food intake were weighed daily. The levels of blood glucose, insulin, total cholesterol (TC), triglyceride (TG), free fatty acid (FFA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)were tested. Intraperitoneal glucose tolerance test (IPGTT) was performed. The insulin-stimulated Akt phosphorylation in the liver, epididymal fat, and skeletal muscle were examined. Also, the mRNA expression levels of HIF1α, proopiomelanocortin (POMC), neuropeptide Y (NPY), and glucose transporter protein 4 (Glut4) in the hypothalamus were checked.ResultsAfter selectively knocking out HIF1α in the neurons of the mediobasal hypothalamus (HIF1αKOMBH), the body weights and food intake of mice increased significantly compared with the control mice (p &lt; 0.001 at 4 weeks). Compared with that of the control group, the insulin level of HIF1αKOMBH mice was 3.5 times higher (p &lt; 0.01). The results of the IPGTT showed that the blood glucose level of the HIF1αKOMBH group at 20–120 min was significantly higher than that of the control group (p &lt; 0.05). The serum TC, FFA, HDL, and LDL content of the HIF1αKOMBH group was significantly higher than those of the control group (p &lt; 0.05). Western blot results showed that compared with those in the control group, insulin-induced AKT phosphorylation levels in liver, epididymal fat, and skeletal muscle in the HIF1αKOMBH group were not as significantly elevated as in the control group. Reverse transcription-polymerase chain reaction (RT-PCR) results in the whole hypothalamus showed a significant decrease in Glut4 mRNA expression. And the mRNA expression levels of HIF1α, POMC, and NPY of the HIF1αKOMBH group decreased significantly in ventral hypothalamus.ConclusionsThe hypothalamic neuronal HIF1α plays an important role in the regulation of body weight balance in mice under normoxic condition. In the absence of hypothalamic neuronal HIF1α, the mice gained weight with increased appetite, accompanied with abnormal glucose and lipid metabolism. POMC and Glut4 may be responsible for this effect of HIF1α.


2018 ◽  
Vol 52 (3) ◽  
pp. 123-127 ◽  
Author(s):  
Farhad Ghadiri Soufi ◽  
Ali Akbar Poursadegh Zonouzi ◽  
Ebrahim Eftekhar ◽  
Kamila Kamali ◽  
Sara Aghakhani Chegeni ◽  
...  

AbstractObjectives. It has been shown that dysregulation of miRNAs expression contributes to the pathogenesis and progression of the diabetes and diabetes-related complications. Drosha, DGCR8, Dicer, and Ago-2 are involved in the miRNA maturation. The aim of the present study was to investigate the mRNA expression levels of these genes in the human umbilical vein endothelial cells (HUVECs) under hyperglycemic condition.Methods. HUVECs were cultured in normo-(5 mM) and hyperglycemic (25 mM) conditions for 24 h. As osmotic control, cells were treated with D-mannitol (25 mM, for 24 h). The mRNA expression levels of Drosha, DGCR8, Dicer and Ago-2 were evaluated using quantitative real-time PCR.Results. The expression level of Drosha, DGCR8, Dicer, and Ago-2 were increased in hyperglycemic HUVECs compared to the control group.Conclusion. Our results show that under hyperglycemic condition, expression of genes involved in the miRNA maturation was significantly increased in HUVECs. Upregulation of these genes may have role in diabetic complications through the dysregulation of the miRNA expression.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Zi-Kai Song ◽  
Hong-Yan Cao ◽  
Hai-Di Wu ◽  
Li-Ting Zhou ◽  
Ling Qin

The aim of our study was to investigate the influence of LPA gene polymorphisms for CAD risk and Lp(a) in a case-control study of Chinese Han population. In addition, we further analyzed the effect of LPA gene expression on plasma levels of Lp(a) and CAD risk. First, five SNPs (rs1367211, rs3127596, rs6415085, rs9347438, and rs9364559) in LPA gene were genotyped using the SEQUENOM Mass-ARRAY system in two groups. Second, we used quantitative real-time PCR to examine the mRNA expression levels of LPA gene in 92 cases and 32 controls. Results showed that the frequency of rs6415085-T allele was significantly higher in case group than that in control group (P<0.05). Haplotypes were not associated with CAD risk (P>0.05). And cases with the TT/TG genotype had significantly higher plasma Lp(a) levels compared with those that have the rs6415085 GG genotype (P<0.05). Additionally, the mRNA expression levels in case group are significantly higher than that in control group (P<0.05). Our study confirmed that rs6415085 was associated with CAD and increased plasma Lp(a) levels. And increased mRNA expression level of LPA gene may be a mechanism in development of CAD.


Sign in / Sign up

Export Citation Format

Share Document