scholarly journals The Preparation of All-Cellulose Nanocomposite Film from Isolated Cellulose of Corncobs as Food Packaging

2018 ◽  
Vol 34 (1) ◽  
pp. 562-567 ◽  
Author(s):  
M. Zulham Efendi Sinaga ◽  
Saharman Gea ◽  
Nami Panindia ◽  
Yuan Alfinsyah Sihombing
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


2014 ◽  
Vol 104 ◽  
pp. 59-65 ◽  
Author(s):  
Moein Ghaderi ◽  
Mohammad Mousavi ◽  
Hossein Yousefi ◽  
Mohsen Labbafi

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Nadya Fitriani Pitaloka ◽  
◽  
Ardilla Sriwijayanti ◽  
Santi Anisa ◽  
Irne Dyah Ayu Wijayanti ◽  
...  

Food packaging materials derived from fossil fuels are single-use products that harm the health of living things when disposed of by releasing toxic byproducts. Many communities are starting to be more environmentally friendly by using biopolymers. However, some biopolymers do not have antibacterial properties, thus shortening the food’s shelf life and not applicable in food packaging. Therefore, the purpose of this work is to develop a biodegradable and antimicrobial food packaging from sugarcane bagasse and clay that degrades over time without compromising the food’s shelf life. Cellulose acetate butyrate (cab) was prepared in an amimcl ionic liquid system from sugarcane bagasse. Then the cab was plasticized using peg, resulting a film. Besides, montmorillonite (mmt) clay was modified with aryl ammonium cations using a cation exchange technique to form bmmt. The nanocomposite film was prepared by mixing the plasticized cab and bmmt, then heated at 50c to evaporate the solution. The nanocomposite film was obtained as a prototype of food packaging. Several tests were conducted including mechanical properties, water vapor permeability (wvp), antimicrobial and toxicity test. Based on research by saha et.al, 2008, the nanocomposite film with the cag, peg and bmmt 100:20:3 composition gave the best mechanical properties because of the agglomeration of bmmt. Also, the nanocomposite film had promising wvp properties as a plastic because the clay layers reduced the water vapor diffusion across the polymer matrix. The toxicity test showed that this nanocomposite film was compatible in human blood. Lastly, this nanocomposite film has antibacterial activity against b. Subtilis and p. Cepacia because of the bmmt presence. In conclusion, the nanocomposite film from sugarcane bagasse and clay containing cag, peg and bmmt 100:20:3 is a promising material for a biodegradable and antimicrobial food packaging, because it has sufficient mechanical properties, antibacterial activity, low wvp and is non-toxic.


2020 ◽  
Vol 108 ◽  
pp. 105863 ◽  
Author(s):  
Lin Wang ◽  
Lizhuan Lin ◽  
Yangyang Guo ◽  
Jie Long ◽  
Ruo-Jun Mu ◽  
...  

2020 ◽  
Vol 40 (10) ◽  
pp. 848-858
Author(s):  
Fatima Zohra Yakdoumi ◽  
Assia Siham Hadj-Hamou

AbstractThe main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1779
Author(s):  
Yunyi Yang ◽  
Yushuang Zhao ◽  
Yijie Hu ◽  
Xinwen Peng ◽  
Linxin Zhong

A new type of sustainable light conversion nanocomposite film was fabricated by using carboxymethyl xylan as matrix and xylan-derived carbon dots (CDs) as both light conversion regents and nano reinforcements. The results demonstrate that CDs can not only significantly enhance the mechanical strength of the nanocomposite film because of chemical reaction between CDs and carboxymethyl xylan, but also impart the film with excellent optical properties. With 1.92 wt% CDs, the tensile strength and elastic modulus of the film are increased by 114.3% and 90.7%, respectively. Moreover, the film has typical excitation and emission spectra, enabling the efficient absorption of UV and the conversion of UV to blue light. This xylan-derived light conversion nanocomposite film is expected to be used in agricultural planting and food packaging.


Sign in / Sign up

Export Citation Format

Share Document