scholarly journals Utilization Of Sugarcane Bagasse Cellulose-Clay Nanocomposite As A Biodegradable And Antibacterial Packaging Material To Extend The Food's Shelf Life

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Nadya Fitriani Pitaloka ◽  
◽  
Ardilla Sriwijayanti ◽  
Santi Anisa ◽  
Irne Dyah Ayu Wijayanti ◽  
...  

Food packaging materials derived from fossil fuels are single-use products that harm the health of living things when disposed of by releasing toxic byproducts. Many communities are starting to be more environmentally friendly by using biopolymers. However, some biopolymers do not have antibacterial properties, thus shortening the food’s shelf life and not applicable in food packaging. Therefore, the purpose of this work is to develop a biodegradable and antimicrobial food packaging from sugarcane bagasse and clay that degrades over time without compromising the food’s shelf life. Cellulose acetate butyrate (cab) was prepared in an amimcl ionic liquid system from sugarcane bagasse. Then the cab was plasticized using peg, resulting a film. Besides, montmorillonite (mmt) clay was modified with aryl ammonium cations using a cation exchange technique to form bmmt. The nanocomposite film was prepared by mixing the plasticized cab and bmmt, then heated at 50c to evaporate the solution. The nanocomposite film was obtained as a prototype of food packaging. Several tests were conducted including mechanical properties, water vapor permeability (wvp), antimicrobial and toxicity test. Based on research by saha et.al, 2008, the nanocomposite film with the cag, peg and bmmt 100:20:3 composition gave the best mechanical properties because of the agglomeration of bmmt. Also, the nanocomposite film had promising wvp properties as a plastic because the clay layers reduced the water vapor diffusion across the polymer matrix. The toxicity test showed that this nanocomposite film was compatible in human blood. Lastly, this nanocomposite film has antibacterial activity against b. Subtilis and p. Cepacia because of the bmmt presence. In conclusion, the nanocomposite film from sugarcane bagasse and clay containing cag, peg and bmmt 100:20:3 is a promising material for a biodegradable and antimicrobial food packaging, because it has sufficient mechanical properties, antibacterial activity, low wvp and is non-toxic.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 870
Author(s):  
Ângelo Luís ◽  
Ana Ramos ◽  
Fernanda Domingues

More than 150 million tons of synthetic plastics are produced worldwide from petrochemical-based materials, many of these plastics being used to produce single-use consumer products like food packaging. The main goal of this work was to research the production and characterization of pullulan–apple fiber biocomposite films as a new food packaging material. The optical, mechanical, and barrier properties of the developed biocomposite films were evaluated. Furthermore, the antioxidant and antibacterial activities of the biocomposite films were additionally studied. The results show that the Tensile Index and Elastic Modulus of the pullulan–apple fiber films were significantly higher (p-value < 0.05) when compared to the pullulan films. Regarding the water vapor permeability, no significant differences (p-value < 0.05) were observed in water vapor transmission rate (WVTR) when the apple fiber was incorporated into the biocomposite films. A significant increase (p-value < 0.05) of water contact angle in both sides of the films was observed when the apple fiber was incorporated into pullulan, indicating an increase in the hydrophobicity of the developed biocomposite films. It is worth noting the hydrophobicity of the (rough) upper side of the pullulan–apple fiber films, which present a water contact angle of 109.75°. It was possible to verify the microbial growth inhibition around the pullulan–apple fiber films for all the tested bacteria.


2020 ◽  
pp. 1298-1306
Author(s):  
Seenaa I. Hussein

     In this research, we prepared a polymer blend of polyvinylalcohol (PVA)/carrageenan/kaolinite by means of the solution cast approach. The composition of the blend was PVA in 1 gm by weight with 0.2 gm carrageenan as a plasticizer. The ratio of nanoclay varied between 1 and 5 wt%. Different properties were investigated in this study such as water vapor permeability, hardness, tear strength, color stability, thermal stability, and antibacterial activity. Water vapor permeability was decreased with increasing the ratio of nanoclay, while the values of hardness, tear strength, color stability, and thermal stability were increased. Also, the antibacterial activity examination with two types of bacteria, e.g. Gram positive (Staphylococcus aureus) and Gram negative (Klebsiella pneumonia), showed inhibition zone diameter which was increased with increasing nanoclay ratio. Moreover, it was found that nanoclay has the ability to kill both Gram positive and negative kinds of bacteria. It was found that the preparation of such films is suitable for food packaging.    


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 525 ◽  
Author(s):  
Shiyi Feng ◽  
Feng Zhang ◽  
Saeed Ahmed ◽  
Yaowen Liu

In this study, PLA/TiO2 composites materials were prepared via electrospinning and solution casting processes. By testing the mechanical properties, water contact angle, water vapor permeability, and solubility of the composite nanofibers and films, the comprehensive performances of the two types of nanocomposites were analyzed. The results show that maximum tensile strengths of 2.71 ± 0.11 MPa and 14.49 ± 0.13 MPa were achieved for the nanofibers and films at a TiO2 content of 0.75 wt.%. Moreover, the addition of TiO2 significantly cut down the water vapor transmittance rate of the nanofibers and films while significantly improving the water solubility. Further, the antibacterial activity increased under UV-A irradiation for a TiO2 nanoparticle content of 0.75 wt.%, and the nanofiber and films exhibited inhibition zones of 4.86 ± 0.50 and 3.69 ± 0.40 mm for E. coli, and 5.98 ± 0.77 and 4.63 ± 0.45 mm for S. aureus, respectively. Overall, the performance of the nanofiber was better than that of the film. Nevertheless, both the nanocomposite membranes satisfied the requirements of food packaging materials.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1838
Author(s):  
Shih-Chen Shi ◽  
Pramod Kumar Mandal ◽  
Tao-Hsing Chen

Synthetic polymers are the most commonly used polymers in daily life. Therefore, it is necessary to develop environmentally friendly polymers. Hydroxypropyl methylcellulose (HPMC) is a potential candidate for a biopolymer, owing to its unique properties. However, HPMC biopolymers have some disadvantages compared to synthetic polymers. In this study, the mechanical properties and tribological performance of MoS2 additive-enhanced cellulose matrix biocomposites were investigated in order to improve the properties of HPMC. MoS2 was incorporated into the HPMC matrix as a strengthening additive. The mechanical properties, bonding, and water vapor permeability of the composites were analyzed. The mechanical and vapor barrier properties of the HPMC films were significantly enhanced. The ultimate tensile strength and Young’s modulus of the composite films increased with the addition of up to 1 wt% MoS2. The water vapor permeability of HPMC films reduced when additives were incorporated. The wear test proves that the MoS2 additives can improve the tribological performance of the HPMC composite while reducing the friction coefficient. The main reason for enhanced tribological performance is the improvement in load capacity of the composite coating by the MoS2 additive. This MoS2/HPMC biocomposite can be used in food packaging.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2339
Author(s):  
Zhichao Yang ◽  
Chaoyi Shen ◽  
Yucheng Zou ◽  
Di Wu ◽  
Hui Zhang ◽  
...  

Gelatin (GA) is a natural protein widely used in food packaging, but its fabricated fibrous film has the defects of a high tendency to swell and inferior mechanical properties. In this work, a novel spinning technique, solution blow spinning (SBS), was used for the rapid fabrication of nanofiber materials; meanwhile, nylon 66 (PA66) was used to improve the mechanical properties and the ability to resist dissolution of gelatin films. Morphology observations show that GA/PA66 composite films had nano-diameter from 172.3 to 322.1 nm. Fourier transform infrared spectroscopy and X-ray indicate that GA and PA66 had strong interaction by hydrogen bonding. Mechanical tests show the elongation at break of the composite film increased substantially from 7.98% to 30.36%, and the tensile strength of the composite film increased from 0.03 MPa up to 1.42 MPa, which indicate that the composite films had the highest mechanical strength. Water vapor permeability analysis shows lower water vapor permeability of 9.93 g mm/m2 h kPa, indicates that GA/PA66 film’s water vapor barrier performance was improved. Solvent resistance analysis indicates that PA66 could effectively improve the ability of GA to resist dissolution. This work indicates that SBS has great promise for rapid preparation of nanofibrous film for food packaging, and PA66 can be applied to the modification of gelatin film.


2013 ◽  
Vol 706-708 ◽  
pp. 197-200 ◽  
Author(s):  
Zhi Hong Zhang ◽  
Yu Yue Qin ◽  
Jian Fan ◽  
Tian Rui Zhao ◽  
Chun Sheng Cheng

Chitosan-based films containing lavender essential oil (LEO) (0, 0.5%, 1.0%, 1.5% (v/v)) were prepared to evaluate their physical and antibacterial activities. In order to study the impact of the incorporation of LEO into chitosan matrix, the solubility, mechanical property, water vapor permeability, and antibacterial activity of the films were investigated. Fourier transform infrared chromatography (FTIR) was carried out to explain structure–property relationships. Results showed that the solubility and water vapor permeability of the chitosan-based film decreased by LEO incorporation. Films containing LEO showed better mechanical property. FTIR spectra demonstrated good interaction between functional groups of chitosan with LEO. With the concentration of LEO increased from 0 to 1.5 %, the inhibitory zone of four bacterial strains (Escherichia coli, Staphylococcus aurous, Bacillus magaterium, Bacillus subtilis) increased. It can be concluded that chitosan films containing LEO can be used for development of active food packaging materials.


10.5219/1177 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 854-862 ◽  
Author(s):  
Usman Amin ◽  
Muhammad Azam Khan ◽  
Muhammad Ehtasham Akram ◽  
Abdel Rahman Mohammad Said Al-Tawaha ◽  
Alexey Laishevtcev ◽  
...  

Environmental consciousness as well as individual’s demand for ready to eat food, recently, has changed the trends in food packaging leading to the development of biodegradable and edible packaging. Emulsified edible films have better transparency, superior mechanical properties and provide barriers to water and other atmospheric gases. Edible films if not consumed, biodegrad chemically. In present study, edible films were, initially, prepared using Chitosan and Aloe vera at different concentrations. Films were then subjected to physical and mechanical testing. Films with 20% Aloe vera had low thickness as compared to films with no Aloe vera. These films also had superior mechanical properties and lower water vapor permeability. Films with 20% Aloe vera were, then, selected and beeswax was dispersed in Chitosan-Aloe vera solution at concentration upto 2.0% followed by film preparation through casting technique. Thickness and water vapor permeability were observed to be improved with increase in concentration of beeswax. Tensile strength of edible films was also improved 1.3 times when concentration of beeswax increased from 0.5 to 2.0%. Percentage elongation decreased with increase in beeswax concentration in the emulsified films. No change in particle size was observed with change in concentration of beeswax. Emulsions were also stable at room temperatures. Decrease in transparency of emulsified edible films was observed with increase in beeswax content in the emulsified films. In addition, cost analysis of the films proved them reasonable to be used as an alternate of synthetic packaging materials.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


2018 ◽  
Vol 6 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Yu Zhang ◽  
Cui Huang ◽  
Jiang Chang

MCS containing resin composites possess enhanced mechanical properties and antibacterial activity, and can smartly induce the deposition of apatite minerals.


Sign in / Sign up

Export Citation Format

Share Document