scholarly journals Industrial Applications of Clay Materials from Ghana (A Review)

2018 ◽  
Vol 34 (4) ◽  
pp. 1719-1734 ◽  
Author(s):  
R.B. Asamoah ◽  
E. Nyankson ◽  
E. Annan ◽  
B. Agyei-Tuffour ◽  
J.K. Efavi ◽  
...  

Clay minerals are phyllosilicate groups naturally found in soils in all parts of the world. They have proven to be among the most essential industrial minerals because of their unique physicochemical properties and versatile applications within a wide range of fields including ceramics, construction, and environmental remediation, biomedical as well as cosmetics. Clay minerals are also primary to the production of other materials such as composite for secondary applications. In Ghana, clay mineral deposits are commonly found in several areas including soil horizons as well as geothermal fields and volcanic deposits, and are formed under certain geological conditions. This review seeks to explore the geographical occurrence and discusses the current uses of various local clay materials in Ghana in order to highlight opportunities for the utilization of these materials for other applications.

Author(s):  
Emmanuel O. Fenibo ◽  
Grace N. Ijoma ◽  
Selvarajan Ramganesh ◽  
Chioma B. Chikere

ABSTRACT Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with the synthetic surfactants in terms of performance with established advantages over the synthetic ones including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, the synthetic surfactants are a preferred option in different industrial applications, because of their availability in commercial quantities, unlike the biosurfactants. Usage of synthetic surfactants introduce new species of recalcitrant pollutants to the environment and lead to undesired results where a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus, interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications where biosurfactants have found useful, with emphases in petroleum biotechnology, environmental remediation and in the agriculture sector. Application of biosurfactant in these settings would lead to industrial growth and environmental sustainability.


Clay Minerals ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 443-453 ◽  
Author(s):  
E. Galan

AbstractThe palygorskite-sepiolite group of clay minerals has a wide range of industrial applications derived mainly from its sorptive, rheological and catalytic properties which are based on the fabric, surface area, porosity, crystal morphology, structure and composition of these minerals. For assessing potential industrial uses, the mineralogical and chemical composition of the clay and its basic physical and physico-chemical parameters must be determined. Then some particular properties of commercial interest can be modified and improved by appropriate thermal, mechanical and acid treatments, surface active agents, organo-mineral derivatives formation, etc. In this paper, a revision of the principal characteristics of commercial palygorskite-sepiolite clays is presented, and potential uses are suggested according to these data. New products and applications are being investigated and those concerning environmental protection in particular, are noted. Finally, possible health effects of these elongate clay minerals are discussed.


2019 ◽  
Vol 7 (11) ◽  
pp. 581 ◽  
Author(s):  
Emmanuel O. Fenibo ◽  
Grace N. Ijoma ◽  
Ramganesh Selvarajan ◽  
Chioma B. Chikere

Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1711
Author(s):  
Heba A. Gad ◽  
Autumn Roberts ◽  
Samirah H. Hamzi ◽  
Haidy A. Gad ◽  
Ilham Touiss ◽  
...  

Jojoba is a widely used medicinal plant that is cultivated worldwide. Its seeds and oil have a long history of use in folklore to treat various ailments, such as skin and scalp disorders, superficial wounds, sore throat, obesity, and cancer; for improvement of liver functions, enhancement of immunity, and promotion of hair growth. Extensive studies on Jojoba oil showed a wide range of pharmacological applications, including antioxidant, anti-acne and antipsoriasis, anti-inflammatory, antifungal, antipyretic, analgesic, antimicrobial, and anti-hyperglycemia activities. In addition, Jojoba oil is widely used in the pharmaceutical industry, especially in cosmetics for topical, transdermal, and parenteral preparations. Jojoba oil also holds value in the industry as an anti-rodent, insecticides, lubricant, surfactant, and a source for the production of bioenergy. Jojoba oil is considered among the top-ranked oils due to its wax, which constitutes about 98% (mainly wax esters, few free fatty acids, alcohols, and hydrocarbons). In addition, sterols and vitamins with few triglyceride esters, flavonoids, phenolic and cyanogenic compounds are also present. The present review represents an updated literature survey about the chemical composition of jojoba oil, its physical properties, pharmacological activities, pharmaceutical and industrial applications, and toxicity.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


2019 ◽  
Vol 109 ◽  
pp. 00048
Author(s):  
Yevhen Lapshyn ◽  
Robert Molchanov ◽  
Borys Blyuss ◽  
Nataliia Osadcha

The conclusion has been made about the necessity to choose the optimal strategies for management by geotechnical systems, based on the analysis of geological faults, which are the main indicator of the mining and geological conditions that characterize the mineral deposits, as well as on the parameters for the infrastructure development of the underground space. The methodological peculiarity of solving the problems set is the use of game theory with modified criteria of Wald, maximax and Savage, since the manifestation of specific geological faults is probabilistic in nature. When choosing the optimal strategy, the average linear deviations of gains or risks are taken into account.


Sign in / Sign up

Export Citation Format

Share Document