Dyeing of Poplar Wood through High-Pressure Processing: Performance Evaluation

2019 ◽  
Vol 62 (5) ◽  
pp. 1163-1171
Author(s):  
Yong Yu ◽  
Kaiya Yan ◽  
Hosahalli S. Ramaswamy ◽  
Songming Zhu ◽  
Huanhuan Li ◽  
...  

Abstract. Dyeing of poplar wood through high-pressure (HP) processing was evaluated at different pressure levels (40 to 130 MPa) and compared with conventional hot dip treatment. Dyeing performance was evaluated based on external surface color, fractal color dimension, dye uptake, internal color, elemental composition, and subsequent ultraviolet aging of the wood. The internal microstructure of the treated wood was also examined by scanning electron microscopy (SEM). Results showed that the external surface color difference and change in brightness were significantly greater with HP treatment than with hot dip treatment. The hue angle of HP treated wood surfaces was 1.27 to 4.01 higher and the fractal color dimension was significantly (p < 0.05) lower than that of hot dip treated wood, demonstrating more intense and more uniform distribution of color with HP treatment. The internal color of HP treated wood was also more evenly distributed and more intense, while the hot dip treated wood had no internal dye uptake (zero penetration). SEM analysis showed that the wood structure was damaged by HP treatment, which allowed the dye solution to penetrate into the wood more easily. Among the different pressure levels, the higher pressures resulted in better dyeing performance; however, considering the treatment cost, time, and energy efficiency, 100 MPa treatment may be more economical. Keywords: Color, Dyeing, Fractal dimension, High pressure, Hot dip, Poplar wood.

2013 ◽  
Vol 2 (4) ◽  
pp. 11 ◽  
Author(s):  
Ajaypal Singh ◽  
Hosahalli Ramaswamy

<p>Effect of high pressure processing (HPP) on physicochemical characteristics like color and texture of whole liquid egg (WLE), egg white (EW) and egg yolk (EY) were evaluated. A full factorial design involving several pressure levels (600-900 MPa) and treatment time (0-15 min) was employed for this study and the high pressure treatment were given in a temperature and pressure controlled pilot scale HP unit. HPP caused significant changes in various physic-chemical properties in various egg components. Use of pressure levels <span style="text-decoration: underline;">&gt;</span> 600 MPa resulted in formation of solid gels for all components of eggs. Pressure induced gels were soft and highly elastic. Hardness and cohesiveness of all egg components were found to increase (<em>p</em> &lt; 0.05) with increase in treatment intensity, and increase in EY was higher than in other egg components. The springiness of WLE increased with pressure and treatment time and were higher than in EW and EY. Color changes as indicated by the total color difference (?E) showed a significant (<em>p</em> &lt; 0.05) increase with an increase in pressure level and treatment time.</p>


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2691-2707
Author(s):  
Kaiya Yan ◽  
Fengming Zhang ◽  
Yang Du ◽  
Hosahalli S. Ramaswamy ◽  
Songming Zhu ◽  
...  

The deformation behavior of high-pressure (HP)-treated hybrid poplar wood, the subsequent swelling, and the equilibrium moisture content properties of HP-densified wood were evaluated using a modified delayed strain/set-recovery method of cyclic humidification-dehumidification at different relative humidity (RH) conditions. The HP treatment resulted in significant compression (densification) of the wood under different treatment conditions. For treated wood samples, the value of delayed elastic strain was relatively small when stored at 20 °C and 65% RH, which indicated that HP-densified wood possessed dimensional stability. The HP-compressed poplar yielded lower equilibrium moisture content than the control at low RH, while major increases were observed at high RH above 76%. Marginal of thickness swelling was observed under the cyclic humidification-dehumidification method in the low RH range while significant swelling occurred at high RH. Conventional methods would only show results that were appropriate for storage at high RH environments. The RH threshold for set-recovery of HP-compressed wood was between 33% and 54% for optimal use, and the extent of set-recovery increased rapidly when RH was between 85% and 95%. Such differences could not be recognized with the conventional methods. In addition, the prolonged holding time significantly decreased the RH threshold value (P < 0.05).


2016 ◽  
Vol 23 (4) ◽  
pp. 293-309 ◽  
Author(s):  
Alifdalino Sulaiman ◽  
Mohammed Farid ◽  
Filipa VM Silva

Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%–18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%–74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03–0.09 and 0.06–0.22 day − 1, respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Catarina Marçal ◽  
Carlos A. Pinto ◽  
Artur M. S. Silva ◽  
Carla Monteiro ◽  
Jorge A. Saraiva ◽  
...  

The present work evaluated the nutritional impact of macroalgae flours used as new ingredients in fermented sausages and the feasibility of using high-pressure processing (HPP) as a non-thermal pasteurization methodology to keep the quality attributes of the new food products. A commercial macroalgae mix was used in the formulation of new macroalgae-fortified meat frankfurter sausages (F-MFS), macroalgae-fortified vegetable frankfurter sausages (F-VFS) and in macroalgae-fortified traditional Portuguese sausage “chouriço” (F-TPS), overall incrementing the contents of Mg, K, Ca, Mn and Fe and decreasing the Na/K ratio. The application of HPP allowed extending the shelf-life of frankfurters by about 3-fold and improved the safety of “chouriço” along 180 days of storage, keeping its microbial load below the detection limit. The prevention of microbial growth in F-MFS and F-VFS was accompanied by pH stability of the products. In addition, no significant detriment on surface color and fatty acids was observed between pressurized and non-pressurized sausages, allowing consolidating the suitability of HPP in seaweed-fortified fermented sausages.


2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

2021 ◽  
Vol 38 (3) ◽  
pp. 513-531
Author(s):  
Yoon S. Song ◽  
John L. Koontz ◽  
Rima O. Juskelis ◽  
Eduardo Patazca ◽  
William Limm ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3769
Author(s):  
Noelia Pallarés ◽  
Albert Sebastià ◽  
Vicente Martínez-Lucas ◽  
Mario González-Angulo ◽  
Francisco J. Barba ◽  
...  

High-pressure processing (HPP) has emerged over the last 2 decades as a good alternative to traditional thermal treatment for food safety and shelf-life extension, supplying foods with similar characteristics to those of fresh products. Currently, HPP has also been proposed as a useful tool to reduce food contaminants, such as pesticides and mycotoxins. The aim of the present study is to explore the effect of HPP technology at 600 MPa during 5 min at room temperature on alternariol (AOH) and aflatoxin B1 (AFB1) mycotoxins reduction in different juice models. The effect of HPP has also been compared with a thermal treatment performed at 90 °C during 21 s. For this, different juice models, orange juice/milk beverage, strawberry juice/milk beverage and grape juice, were prepared and spiked individually with AOH and AFB1 at a concentration of 100 µg/L. After HPP and thermal treatments, mycotoxins were extracted from treated samples and controls by dispersive liquid–liquid microextraction (DLLME) and determined by HPLC-MS/MS-IT. The results obtained revealed reduction percentages up to 24% for AFB1 and 37% for AOH. Comparing between different juice models, significant differences were observed for AFB1 residues in orange juice/milk versus strawberry juice/milk beverages after HPP treatment. Moreover, HPP resulted as more effective than thermal treatment, being an effective tool to incorporate to food industry in order to reach mycotoxins reductions.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Monika Mieszczakowska-Frąc ◽  
Karolina Celejewska ◽  
Witold Płocharski

Nowadays, thermal treatments are used for extending the shelf-life of vegetable and fruit products by inactivating microorganisms and enzymes. On the other hand, heat treatments often induce undesirable changes in the quality of the final product, e.g., losses of nutrients, color alterations, changes in flavor, and smell. Therefore, the food industry is opening up to new technologies that are less aggressive than thermal treatment to avoid the negative effects of thermal pasteurization. Non-thermal processing technologies have been developed during the last decades as an alternative to thermal food preservation. Processing changes the structure of fruit and vegetables, and hence the bioavailability of the nutrients contained in them. In this review, special attention has been devoted to the effects of modern technologies of fruit and vegetable processing, such as minimal processing (MPFV), high-pressure processing (HPP), high-pressure homogenization (HPH), ultrasounds (US), pulsed electric fields (PEF), on the stability and bioavailability of vitamin C.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 677
Author(s):  
Cristina Serra-Castelló ◽  
Ilario Ferrocino ◽  
Anna Jofré ◽  
Luca Cocolin ◽  
Sara Bover-Cid ◽  
...  

Formulations with lactate as an antimicrobial and high-pressure processing (HPP) as a lethal treatment are combined strategies used to control L. monocytogenes in cooked meat products. Previous studies have shown that when HPP is applied in products with lactate, the inactivation of L. monocytogenes is lower than that without lactate. The purpose of the present work was to identify the molecular mechanisms underlying the piezo-protection effect of lactate. Two L. monocytogenes strains (CTC1034 and EGDe) were independently inoculated in a cooked ham model medium without and with 2.8% potassium lactate. Samples were pressurized at 400 MPa for 10 min at 10 °C. Samples were subjected to RNA extraction, and a shotgun transcriptome sequencing was performed. The short exposure of L. monocytogenes cells to lactate through its inoculation in a cooked ham model with lactate 1h before HPP promoted a shift in the pathogen’s central metabolism, favoring the metabolism of propanediol and ethanolamine together with the synthesis of the B12 cofactor. Moreover, the results suggest an activated methyl cycle that would promote modifications in membrane properties resulting in an enhanced resistance of the pathogen to HPP. This study provides insights on the mechanisms developed by L. monocytogenes in response to lactate and/or HPP and sheds light on the understanding of the piezo-protective effect of lactate.


Sign in / Sign up

Export Citation Format

Share Document