Declining Soil Moisture Threatens Water Availability in the U.S. Great Plains

2020 ◽  
Vol 63 (5) ◽  
pp. 1147-1156
Author(s):  
Kelsey R. McDonough ◽  
Stacy L. Hutchinson ◽  
Shawn Hutchinson

HighlightsFuture water security in the U.S. Great Plains is threated by a drying trend in average annual soil moisture.Agricultural management will become increasingly challenging due to declines in surface water storage.Alternative management strategies are needed to meet future environmental and anthropogenic surface water demand.Abstract. Spatiotemporal trends in soil moisture are of considerable importance within the food-energy-water nexus. Soil moisture dictates the productivity of ecosystems, plays a major role in land-atmosphere interactions, influences climate change projections, and shapes future water security. Monitoring of long-term soil moisture trends has proven useful for managing water resource allocation and developing solutions to global water security challenges. Thus, we examine annual trends in surface soil moisture throughout the U.S. Great Plains region from 1987 to 2016 using data from NASA’s observation-driven SPoRT-LIS land surface model at 3 km resolution. Results reveal a drying trend in soil moisture for a majority of the U.S. Great Plains, although wetter conditions have been realized in the northernmost region of the Missouri River basin. These results, when coupled with climate change-driven increases in temperature and evapotranspiration, will inevitably drive baseline soil moisture to drier conditions in the future. Under drying soil moisture conditions, future agricultural production and water resource management in the U.S. Great Plains will become increasingly complicated, thereby threatening future food and water security. However, these results can be applied to inform and improve climate change adaptation strategies in order to ensure adequate volumes of freshwater to meet future human and environmental water demand. Keywords: Climate change, SPoRT-LIS, Trend analysis, Water security.

2012 ◽  
Vol 25 (24) ◽  
pp. 8380-8386 ◽  
Author(s):  
Martin P. Hoerling ◽  
Jon K. Eischeid ◽  
Xiao-Wei Quan ◽  
Henry F. Diaz ◽  
Robert S. Webb ◽  
...  

Abstract How Great Plains climate will respond under global warming continues to be a key unresolved question. There has been, for instance, considerable speculation that the Great Plains is embarking upon a period of increasing drought frequency and intensity that will lead to a semipermanent Dust Bowl in the coming decades. This view draws on a single line of inference of how climate change may affect surface water balance based on sensitivity of the Palmer drought severity index (PDSI). A different view foresees a more modest climate change impact on Great Plains surface moisture balances. This draws on direct lines of analysis using land surface models to predict runoff and soil moisture, the results of which do not reveal an ominous fate for the Great Plains. The authors’ study presents a parallel diagnosis of projected changes in drought as inferred from PDSI and soil moisture indicators in order to understand causes for such a disparity and to shed light on the uncertainties. PDSI is shown to be an excellent proxy indicator for Great Plains soil moisture in the twentieth century; however, its suitability breaks down in the twenty-first century, with the PDSI severely overstating surface water imbalances and implied agricultural stresses. Several lines of evidence and physical considerations indicate that simplifying assumptions regarding temperature effects on water balances, especially concerning evapotranspiration in Palmer’s formulation, compromise its suitability as drought indicator in a warming climate. The authors conclude that projections of acute and chronic PDSI decline in the twenty-first century are likely an exaggerated indicator for future Great Plains drought severity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Behailu Birhanu ◽  
Seifu Kebede ◽  
Katrina Charles ◽  
Meron Taye ◽  
Ayele Atlaw ◽  
...  

Improving water security is critical to delivering the best outcomes for development. In Ethiopia, the upper Awash sub-basin supports expanding urban and industrial areas, with increasing water demands. Studies have preferentially focused either on surface water hydrology or on groundwater characterization. However, novel tools are required to support the conjunctive use of surface and groundwater for competing users under potential climate change impacts. In this paper, we present research based on a WEAP-MODFLOW link configured for four catchments in the upper Awash sub-basin (Akaki, Melka Kunture, Mojo, and Koka). The Akaki catchment supplies water for Addis Ababa city. Unlike most surface water hydrological models, both supply (surface water and groundwater) and demand (domestic, industrial, and livestock) are modeled. The tool was used to evaluate the impacts of population growth, leakage, expansion of surface and groundwater supply schemes, and climate change scenarios up to the year 2030. Considering the high population growth rate scenario for Addis Ababa city, the unmet domestic water demand may increase to 760 MCM in 2030. Water leakage through poor water supply distribution networks contributed about 23% of the unmet water demand. Though not significant compared with population and water loss stresses, climate change also affect the supply demand condition in the basin. Planning for more groundwater abstraction without considering additional surface water reservoir schemes will noticeably impact the groundwater resource, with groundwater levels projected to decline by more than 20 m. Even more groundwater level decline is observed In the Akaki catchment, where Addis Ababa city is located. Conjunctive use of surface and groundwater not only boosts the supply demand situation in the basin but will lift off some of the stresses from the groundwater resources. Even under the likely increase in temperature and low precipitation climate scenarios, the conjunctive use resulted in a significant increase in domestic water demand coverage from 26% for the reference condition to 90% in 2030, with minimum effect on the groundwater resources. To improve water security conditions through sustainable utilization of both surface and groundwater resources, policy responses need to consider surface and groundwater conjunctive use. Minimizing water leakage should also be given the highest priority.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


2015 ◽  
Vol 28 (14) ◽  
pp. 5813-5829 ◽  
Author(s):  
Joseph A. Santanello ◽  
Joshua Roundy ◽  
Paul A. Dirmeyer

Abstract The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.


2018 ◽  
Author(s):  
Edward K. P. Bam ◽  
Rosa Brannen ◽  
Sujata Budhathoki ◽  
Andrew M. Ireson ◽  
Chris Spence ◽  
...  

Abstract. Long-term meteorological, soil moisture, surface water, and groundwater data provide information on past climate change, most notably information that can be used to analyze past changes in precipitation and groundwater availability in a region. These data are also valuable to test, calibrate and validate hydrological and climate models. CCRN (Changing Cold Regions Network) is a collaborative research network that brought together a team of over 40 experts from 8 universities and 4 federal government agencies in Canada for 5 years (2013–18) through the Climate Change and Atmospheric Research (CCAR) Initiative of the Natural Sciences and Engineering Research Council of Canada (NSERC). The working group aimed to integrate existing and new data with improved predictive and observational tools to understand, diagnose and predict interactions amongst the cryospheric, ecological, hydrological, and climatic components of the changing Earth system at multiple scales, with a geographic focus on the rapidly changing cold interior of Western Canada. The St Denis National Wildlife Area database contains data for the prairie research site, St Denis National Wildlife Research Area, and includes atmosphere, soil, and groundwater. The meteorological measurements are observed every 5 seconds, and half-hourly averages (or totals) are logged. Soil moisture data comprise volumetric water content, soil temperature, electrical conductivity and matric potential for probes installed at depths of 5 cm, 20 cm, 50 cm, 100 cm, 200 cm and 300 cm in all soil profiles. Additional data on snow surveys, pond and groundwater levels, and water isotope isotopes collected on an intermittent basis between 1968 and 2018 are also presented including information on the dates and ground elevations (datum) used to construct hydraulic heads. The metadata table provides location information, information about the full range of measurements carried out on each parameter and GPS locations that are relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.20383/101.0115.


2019 ◽  
Vol 5 (4) ◽  
pp. 1859-1875 ◽  
Author(s):  
Alemu Ademe Bekele ◽  
Santosh Murlidhar Pingale ◽  
Samuel Dagalo Hatiye ◽  
Alemayehu Kasaye Tilahun

2020 ◽  
Vol 63 (5) ◽  
pp. 1593-1601
Author(s):  
Michael D. Dukes

HighlightsSavings numbers in new studies across multiple soil types and climates are similar to those summarized in 2011 and are summarized here as 51% in research plot studies and 30% in single-family homes.Studies of the human factors have begun showing how important the users are to success of the technology.Education in implementation remains important to achieve potential water conservation.Abstract. Smart irrigation controllers, such as evapotranspiration (ET) and soil moisture sensor (SMS) controllers, have become commonly available from virtually all irrigation controller manufacturers. This review summarizes the literature since the Fifth Decennial National Irrigation Symposium (NIS) concerning these controllers in research studies and pilot implementations. Studies have expanded to multiple climates throughout the U.S. on a variety of soils and plant types. When these devices are implemented properly on sites that have potential irrigation savings (i.e., excess irrigation), they are able to reduce irrigation while maintaining plant quality. The level of reduction depends on many factors, including the amount of excess irrigation, climate, plant type, and human interaction with the technology. When studies report positive savings, the levels documented here range from 40% to 61% (51% avg.) in plot studies and from 28% to 32% (30% avg.) in residential studies. Of 17 identified studies in the past decade, five reported negative savings, and in most cases those results were due to ET controllers installed on sites with little excess irrigation or controller programming that was not optimized for savings. New trends in the industry include Wi-Fi signal-based ET controllers with smartphone app capability, an upcoming standard for SMS controllers, as well as smart controllers becoming mandatory in areas of the U.S. As identified in the Fifth Decennial NIS, it remains important to implement controllers on sites with the potential for irrigation reduction as well as proper implementation with the best current information. Finally, there is a need to understand human interaction with these devices because improper programming can make the difference between a water-saving device and ineffective technology with a dissatisfied customer. Keywords: ET controller, Landscape irrigation, Smart controller, SMS, Soil moisture sensor, Soil water sensor.


2014 ◽  
Vol 11 (7) ◽  
pp. 8537-8569 ◽  
Author(s):  
P. A. Dirmeyer ◽  
G. Fang ◽  
Z. Wang ◽  
P. Yadav ◽  
A. D. Milton

Abstract. Results from ten global climate change models are synthesized to investigate changes in extremes, defined as wettest and driest deciles in precipitation, soil moisture and runoff based on each model's historical twentieth century simulated climatology. Under a moderate warming scenario, regional increases in drought frequency are found with little increase in floods. For more severe warming, both drought and flood become much more prevalent, with nearly the entire globe significantly affected. Soil moisture changes tend toward drying while runoff trends toward flood. To determine how different sectors of society dependent the on various components of the surface water cycle may be affected, changes in monthly means and interannual variability are compared to data sets of crop distribution and river basin boundaries. For precipitation, changes in interannual variability can be important even when there is little change in the long-term mean. Over 20% of the globe is projected to experience a combination of reduced precipitation and increased variability under severe warming. There are large differences in the vulnerability of different types of crops, depending on their spatial distributions. Increases in soil moisture variability are again found to be a threat even where soil moisture is not projected to decrease. The combination of increased variability and greater annual discharge over many basins portends increased risk of river flooding, although a number of basins are projected to suffer surface water shortages.


Author(s):  
Rachel Gaal ◽  
James L. Kinter

AbstractMesoscale convective systems (MCS) are known to develop under ideal conditions of temperature and humidity profiles and large-scale dynamic forcing. Recent work, however, has shown that summer MCS events can occur under weak synoptic forcing or even unfavorable large-scale environments. When baroclinic forcing is weak, convection may be triggered by anomalous conditions at the land surface. This work evaluates land surface conditions for summer MCS events forming in the U.S. Great Plains using an MCS database covering the contiguous United States east of the Rocky Mountains, in boreal summers 2004-2016. After isolating MCS cases where synoptic-scale influences are not the main driver of development (i.e. only non-squall line storms), antecedent soil moisture conditions are evaluated over two domain sizes (1.25° and 5° squares) centered on the mean position of the storm initiation. A negative correlation between soil moisture and MCS initiation is identified for the smaller domain, indicating that MCS events tend to be initiated over patches of anomalously dry soils of ~100-km scale, but not significantly so. For the larger domain, soil moisture heterogeneity, with anomalously dry soils (anomalously wet soils) located northeast (southwest) of the initiation point, is associated with MCS initiation. This finding is similar to previous results in the Sahel and Europe that suggest that induced meso-β circulations from surface heterogeneity can drive convection initiation.


Sign in / Sign up

Export Citation Format

Share Document