scholarly journals A partitioned Newton method for the interaction of a fluid and a 3D shell structure

Author(s):  
Miguel Ángel Fernández ◽  
Jean-Frédéric Gerbeau ◽  
Antoine Gloria ◽  
Marina Vidrascu

We propose a new fluid-structure algorithm based on a domain decomposition paradigm. The method is based on the principle “linearize first, then decompose” whereas the usual schemes are generally “nonlinear in subdomains”. The proposed approach is more attractive when the complexity of the structure is high, which is the case with the structural model used in this study (nonlinear 3D shell). Another contribution of this paper is to investigate the use of a Neumann-Neumann preconditioner for the linearized problem. In particular, it is shown that when this preconditioner is adequately balanced, it tends to the Dirichlet-Neumann preconditioner because of the heterogeneity of the fluid-structure problem.

Author(s):  
Neander Berto Mendes ◽  
Lineu José Pedroso ◽  
Paulo Marcelo Vieira Ribeiro

ABSTRACT: This work presents the dynamic response of a lock subjected to the horizontal S0E component of the El Centro earthquake for empty and completely filled water chamber cases, by coupled fluid-structure analysis. Initially, the lock was studied by approximation, considering it similar to the case of a double piston coupled to a two-dimensional acoustic cavity (tank), representing a simplified analytical model of the fluid-structure problem. This analytical formulation can be compared with numerical results, in order to qualify the responses of the ultimate problem to be investigated. In all the analyses performed, modeling and numerical simulations were done using the finite element method (FEM), supported by the commercial software ANSYS.


Author(s):  
Mürüvvet Sinem Sicim ◽  
Metin Orhan Kaya

The main goal of this study is the optimization of vibration reduction on helicopter blade by using macro fiber composite (MFC) actuator under pressure loading. Due to unsteady aerodynamic conditions, vibration occurs mainly on the rotor blade during forward flight and hover. High level of vibration effects fatigue life of components, flight envelope, pleasant for passengers and crew. In this study, the vibration reduction phenomenon on helicopter blade is investigated. 3D helicopter blade model is used to perform the aeroelastic behavior of a helicopter blade. Blade design is created by Spaceclaim and finite element analysis is conducted by ANSYS 19.0. Generated model are solved via Fluent by using two-way fluid-solid coupling analysis, then the analyzed results (all aerodynamic loads) are directly transferred to the structural model. Mechanical results (displacement etc.) are also handed over to the Fluent analysis by helping fluid-structure interaction interface. Modal and harmonic analysis are performed after FSI analysis. Shark 120 unmanned helicopter blade model is used with NACA 23012 airfoil. The baseline of the blade structure consists of D spar made of unidirectional Glass Fiber Reinforced Polymer +45°/−45° GFRP skin. MFC, which was developed by NASA’s Langley Research Center for the shaping of aerospace structures, is applied on both upper and lower surfaces of the blade to reduce the amplitude in the twist mode resonant frequency. D33 effect is important for elongation and to observe twist motion. To foresee the behavior of the MFC, thermo-elasticity analogy approach is applied to the model. Therefore, piezoelectric voltage actuation is applied as a temperature change on ANSYS. The thermal analogy is validated by using static behavior of cantilever beam with distributed induced strain actuators. Results for cantilever beam are compared to experimental results and ADINA code results existing in the literature. The effects of fiber orientation of MFC actuator and applied voltage on vibration reduction on helicopter blade are represented. The study shows that torsion mode determines the optimum placement of actuators. Fiber orientation of the MFC has few and limited influences on results. Additionally, the voltage applied on MFC has strong effects on the results and they must be selected according to applied model.


2010 ◽  
Vol 29-32 ◽  
pp. 1458-1463 ◽  
Author(s):  
Jin Yun Liu ◽  
Jian Yun Chen

Three basic types of similar relationship between the prototype and the model for dynamic structural model test and dynamic destructive model test were proposed in corresponding literatures. At the time the situation where various similar relationships are applicable and the technique to ensure similarity for the different goal was discussed. Here the numerical simulation of model test of water-conveyance tunnel concerning fluid-structure interaction in soft soil is studied. Based on economy and practicability of selective material for model test, the similar relationship and the technique are proposed, which are validated through the example. The results of numerical simulation show: under the specific conditions, data of the model test can completely transfer to those of the prototype by use of this type of similar skill, and get more useful information. Some new ideas are introduced to keep the similarity of the hydro-structure structures.


2009 ◽  
Vol 53 (04) ◽  
pp. 214-226
Author(s):  
Antoine Ducoin ◽  
François Deniset ◽  
Jacques André Astolfi ◽  
Jean-François Sigrist

The present paper is concerned with the numerical and experimental investigation of the hydroelastic behavior of a deformable hydrofoil in a uniform flow. The study is developed within the general framework of marine structure design and sizing. An experimental setup is developed in the IRENav hydrodynamic tunnel in which a cambered rectangular hydrofoil is mounted. An image-processing device enables the visualization of the foil displacement. As for the numerical part, the structure problem is solved with the finite element method, while the fluid problem is solved with the finite volume method using two distinct numerical codes that are coupled through an iterative algorithm based on the exchange of the boundary conditions at the fluid-structure interface. Results obtained from the coupled fluid-structure computations including deformation and hydrodynamic coefficients are presented. The influence of the fluid-structure coupling is evaluated through comparisons with "noncoupled" simulations. The numerical simulations are in very good agreement with the experimental results and highlight the importance of the fluid-structure coupling consideration. Particular attention is paid to the pressure distribution modification on the hydrofoil as a result of deformations that can lead to an advance of the cavitation inception, which is of paramount importance for naval applications.


2012 ◽  
Vol 252 ◽  
pp. 140-143
Author(s):  
Dong Sheng Yao ◽  
Li Bin Zhao

Model updating techniques are used to modify structural model for more accurate predictions of dynamics behavior. A simple survey on the model updating methods and correlation criteria is presented. Based on the inverse eigensensitivity method (IESM) and modal assurance criterion (MAC), a scheme of model updating for structures is presented and realized by user defined subroutine combined with APDL in commercial software ANSYS®. A four-DOF spring-mass system is assumed and updated, from which the predicted frequencies and MAC values are satisfied compared to the actual dynamics characteristics. This gives evidence that the presented model updating scheme is feasible and efficient. Furthermore, a cylindrical shell structure containing global and local modal information is established to research the updating ability of the scheme on some focused local modal information. The results due to the updated model of cylindrical shell structure show that not only the global modal data but also the local modal data have a good agreement with that of the actual structure.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Y. Bazilevs ◽  
A. Korobenko ◽  
X. Deng ◽  
J. Yan ◽  
M. Kinzel ◽  
...  

Full-scale, 3D, time-dependent aerodynamics and fluid–structure interaction (FSI) simulations of a Darrieus-type vertical-axis wind turbine (VAWT) are presented. A structural model of the Windspire VAWT (Windspire energy, http://www.windspireenergy.com/) is developed, which makes use of the recently proposed rotation-free Kirchhoff–Love shell and beam/cable formulations. A moving-domain finite-element-based ALE-VMS (arbitrary Lagrangian–Eulerian-variational-multiscale) formulation is employed for the aerodynamics in combination with the sliding-interface formulation to handle the VAWT mechanical components in relative motion. The sliding-interface formulation is augmented to handle nonstationary cylindrical sliding interfaces, which are needed for the FSI modeling of VAWTs. The computational results presented show good agreement with the field-test data. Additionally, several scenarios are considered to investigate the transient VAWT response and the issues related to self-starting.


Sign in / Sign up

Export Citation Format

Share Document