scholarly journals Performance of constructed wetland system using different species of macrophytes in the treatment of domestic sewage treatment

Author(s):  
Delvio Sandri ◽  
Ana Paula Reis

The objective is to assess the initial performance of a constructed wetland system and the development of the macrophyte species cattail(Typha spp.) (CWt), piripiri (Cyperus giganteus) (CWp), and white garland lily (Hedychium coronarium Koehne) (CWl) and an suncultivated (UNc) on the treatment of sewage from toilets and from a restaurant. Changes in hydrogen potential, electrical conductivity, total suspended solids, total solids, biochemical oxygen demand, chemical oxygen demand, turbidity, nitrate, ammonium nitrogen, total phosphate, hydraulic retention time (HRT), and potential evapotranspiration (PET) and the development and adaptation of macrophytes were measured. The surface area of ??each constructed wetland (CW) had a surface area of 16.25 m2 and average volume treated of 0.40 m3 d-1, with continuous variable horizontal subsurface flow equally fed with sewage previously treated in three septic tanks in series, with an individual useful volume of 5.100 L. The PET in CWt, CWp and CWl was higher than that of UNc. The highest pH values were obtained in the effluent of CWp, CWt, and CWl. The use of macrophytes did not influence the EC, TS, BOD5,20, COD, and nitrate were lower and ammonium nitrogen and total phosphate were higher in the effluent of CWs and UNc in relation to the influent. The efficiency indexes that showed a very strong Pearson correlations (> 90%) were pH correlated with N-NH4+, turbidity correlated with COD, TS correlated with EC, and BOD5,20 and COD correlated with NO3-.Piripiri and cattails showed the best development of plants in the second half of CW.

2017 ◽  
Vol 76 (2) ◽  
pp. 434-442 ◽  
Author(s):  
Xuan Cuong Nguyen ◽  
Dinh Duc Nguyen ◽  
Nguyen Thi Loan ◽  
Soon Woong Chang

In this study, a pilot-scale integrated constructed wetland with vertical flow (VF) and horizontal flow (HF) in series was designed and investigated to evaluate sewage wastewater treatment capacity. The VF unit was planted with Canna indica and was 1.2 m long, 1.2 m wide, and 1.2 m high; whereas the HF unit contained Colocasia esculenta and was 3.0 m long, 1.0 m wide, and 1.0 m high. The system was operated under different hydraulic loading rates (HLRs) of 0.1, 0.2, and 0.15 m/d. The effluent concentrations differed as HLR changed, and the means were total suspended solids (TSS): 87 mg/L; biological oxygen demand (BOD5): 31 mg/L; chemical oxygen demand (CODCr): 59 mg/L; ammonium nitrogen (NH4-N): 5.3 mg/L; nitrate nitrogen NO3-N: 8.4 mg/L; total nitrogen (TN): 7.1 mg/L; phosphate (PO4-P): 0.9 mg/L; and total coliforms (TCol): 1,485 most probable number (MPN)/100 mL. The average removal efficiencies for TSS, BOD5, TN, NH4-N, PO4-P, and TCol were 28.3, 74.9, 79, 76.2, 3.6, and 82%, respectively. There were significant differences in the effluent concentrations among the three HLRs (P < 0.05), except for PO4-P.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1100 ◽  
Author(s):  
Ya-Wen Wang ◽  
Hua Li ◽  
You Wu ◽  
Yun Cai ◽  
Hai-Liang Song ◽  
...  

Rural runoff with abundant nutrients has become a great threat to aquatic environment. Hence, more and more attention has been focused on nutrients removal. In this study, an improved aerobic/anaerobic/aerobic three-stage water spinach constructed wetland (O-A-O-CW) was used to improve the removal of nitrogen and phosphorus of rural runoff. The removal rate of the target pollutants in O-A-O-CW was compared with the common matrix flow wetland as well as the no-plant wetland. The results showed that the O-A-O-CW significantly increased the chemical oxygen demand, total phosphorus, ammonium-nitrogen, nitrate, and total nitrogen removal rate, and the corresponding removal rate was 55.85%, 81.70%, 76.64%, 89.78%, and 67.68%, respectively. Moreover, the best hydraulic condition of the wetland, including hydraulic retention time and hydraulic loading, was determined, which were 2 days and 0.45 m3·m−2·day−1, respectively. Furthermore, the removal mechanism of the constructed wetland was thoroughly studied, which included the adsorption of nitrogen and phosphorus by the matrix and water spinach, and the nitrification and denitrification by the bacteria. The results demonstrated that the mechanisms of nitrogen removal in the new type wetland were principally by the nitrification and denitrification process. Additionally, adsorption and precipitation by the matrix are mainly responsible for phosphorus removal. These results suggested that the new O-A-O-CW can efficiently removal nutrients and enhance the water quality of the rural runoff.


2005 ◽  
Vol 51 (9) ◽  
pp. 137-144 ◽  
Author(s):  
A. Noorvee ◽  
E. Põldvere ◽  
Ü. Mander

Data from 18 sampling wells in Kodijärve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodijärve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodijärve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime.


2014 ◽  
Vol 69 (7) ◽  
pp. 1410-1418 ◽  
Author(s):  
Weijie Guo ◽  
Zhu Li ◽  
Shuiping Cheng ◽  
Wei Liang ◽  
Feng He ◽  
...  

To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m−2 yr−1, respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4+-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.


Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 716 ◽  
Author(s):  
Xinxi Fu ◽  
Xiaofu Wu ◽  
Sangyang Zhou ◽  
Yonghua Chen ◽  
Mingli Chen ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1054 ◽  
Author(s):  
Xueyuan Bai ◽  
Xianfang Zhu ◽  
Haibo Jiang ◽  
Zhongqiang Wang ◽  
Chunguang He ◽  
...  

Constructed wetlands can play an active role in improving the water quality of urban rivers. In this study, a sequential series system of the floating-bed constructed wetland (FBCW), horizontal subsurface flow constructed wetland (HSFCW), and surface flow constructed wetland (SFCW) were constructed for the urban river treatment in the cold regions of North China, which gave full play to the combined advantages. In the Yitong River, the designed capacity and the hydraulic loading of the system was 100 m3/d and 0.10 m3/m2d, respectively. The hydraulic retention time was approximately 72 h. The monitoring results, from April to October in 2016, showed the multiple wetland ecosystem could effectively remove chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), total phosphate (TP), and suspended solids (SS) at average removal rates of 74.79%, 80.90%, 71.12%, 78.44%, and 91.90%, respectively. The removal rate of SS in floating-bed wetland was the largest among all the indicators (80.24%), which could prevent the block of sub-surface flow wetland effectively. The sub-surface flow wetland could remove the NH4-N, TN, and TP effectively, and the contribution rates were 79.20%, 64.64%, and 81.71%, respectively. The surface flow wetland could further purify the TN and the removal rate of TN could reach 23%. The total investment of this ecological engineering was $12,000. The construction cost and the operation cost were $120 and $0.02 per ton of polluted water, which was about 1/3 to 1/5 and 1/6 to 1/3 of the conventional sewage treatment, respectively. The results of this study provide a technical demonstration of the restoration of polluted water in urban rivers in northern China.


2006 ◽  
Vol 26 (3) ◽  
pp. 272-282 ◽  
Author(s):  
Zhiwen Song ◽  
Zhaopei Zheng ◽  
Jie Li ◽  
Xianfeng Sun ◽  
Xiaoyuan Han ◽  
...  

1995 ◽  
Vol 32 (3) ◽  
pp. 79-86
Author(s):  
Louis Vandevenne

The sewage treatment plant studied, located in a rural area, is designed to treat the wastewater for a population of 650. The station functions in accordance with the principle of natural lagoons via artificial wetlands combining macrophytes and microphytes lagoons arranged in series. The overall surface area including the primary lagoon gives rise to a specific load of 6 m2/inhabitant. Both the primary and secondary treatments produce a very good water quality in accordance with the conventional parameters (SS, Suspended Solids; BOD5, the Biological Oxygen Demand over a 5 day period; COD, the Chemical Oxygen Demand). The tertiary purification of the nitrogen and phosphorus does not give as good results as expected, respectively 42% and 35% removal; very little better than those of a conventional installation. The tertiary quality standard appears not to be attainable since the successive biological mechanisms carrying out the elimination process are followed by a release of the pollutants and an insufficient elimination (plant exportation) by the macrophytes. The design and management of the macrophytes basins is relatively tricky, particularly with respect to the removal of weeds and the regulation of the water level in the macrophytes basins.


Sign in / Sign up

Export Citation Format

Share Document