Simulation and measurement of systematic errors of stitchinginterferometry for high precision X-ray mirrors with large radius ofcurvature

2021 ◽  
Author(s):  
Qiaoyu Wu ◽  
Qiushi Huang ◽  
Jun Yu ◽  
Xudong Xu ◽  
Runze QI ◽  
...  
2012 ◽  
Vol 68 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Martin Schmidbauer ◽  
Albert Kwasniewski ◽  
Jutta Schwarzkopf

The lattice parameters of three perovskite-related oxides have been measured with high precision at room temperature. An accuracy of the order of 10−5 has been achieved by applying a sophisticated high-resolution X-ray diffraction technique which is based on the modified Bond method. The results on cubic SrTiO3 [a = 3.905268 (98) Å], orthorhombic DyScO3 [a = 5.442417 (54), b = 5.719357 (52) and c = 7.904326 (98) Å], and orthorhombic NdGaO3 [a = 5.428410 (54), b = 5.498407 (55) and c = 7.708878 (95) Å] are discussed in view of possible systematic errors as well as non-stoichiometry in the crystals.


Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


1996 ◽  
Vol 14 (3) ◽  
pp. 971-976 ◽  
Author(s):  
N. Awaji ◽  
Y. Sugita ◽  
T. Nakanishi ◽  
S. Ohkubo ◽  
K. Takasaki ◽  
...  
Keyword(s):  

2010 ◽  
Vol 43 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Yu Kitago ◽  
Nobuhisa Watanabe ◽  
Isao Tanaka

Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.


1997 ◽  
Vol 15 (1) ◽  
pp. 133-138 ◽  
Author(s):  
A.M. Buyko ◽  
O.M. Burenkov ◽  
V.K. Chernyshev ◽  
S.F. Garanin ◽  
S.D. Kuznetsov ◽  
...  

Powerful pulse installations are usually used to produce large yields of X-ray radiation. With an increase of the stored energy up to 100 MJ, the costof a single experiment on these installations becomes comparable to the cost of a shot with explosive magnetic generators (EMG), according to expert estimates. The physical scheme of a device with a changeable mass liner forlarge soft X-ray (in the range of 0.3 to 0.5 keV) yields eneration is investigated. The scheme investigated is substantially free from difficulties connected with high precision liners and fast switches for current pulse sharpening.


2021 ◽  
Vol 50 (1) ◽  
pp. 156-164
Author(s):  
吴鹿杰 Lujie WU ◽  
文庆涛 Qingtao WEN ◽  
高雅增 Yazeng GAO ◽  
卢维尔 Weier LU ◽  
夏洋 Yang XIA ◽  
...  

Author(s):  
L. I. Goray ◽  
E. V. Pirogov ◽  
M. V. Svechnikov ◽  
M. S. Sobolev ◽  
N. K. Polyakov ◽  
...  

Author(s):  
Alexander Kiy ◽  
Christian Notthoff ◽  
Shankar Dutt ◽  
Mark Grigg ◽  
Andrea Hadley ◽  
...  

In situ small angle X-ray scattering (SAXS) measurements of ion track etching of polycarbonate foils are used to directly monitor the selective dissolution of ion tracks with high precision, including...


1968 ◽  
pp. 359-375 ◽  
Author(s):  
T. W. Baker ◽  
J. D. George ◽  
B. A. Bellamy ◽  
R. Causer

2018 ◽  
Vol 618 ◽  
pp. A39 ◽  
Author(s):  
M. Roncarelli ◽  
M. Gaspari ◽  
S. Ettori ◽  
V. Biffi ◽  
F. Brighenti ◽  
...  

Context. The X-ray Integral Field Unit (X-IFU) that will be on board the Athena telescope will provide an unprecedented view of the intracluster medium (ICM) kinematics through the observation of gas velocity, ν, and velocity dispersion, w, via centroid-shift and broadening of emission lines, respectively. Aims. The improvement of data quality and quantity requires an assessment of the systematics associated with this new data analysis, namely biases, statistical and systematic errors, and possible correlations between the different measured quantities. Methods. We have developed an end-to-end X-IFU simulator that mimics a full X-ray spectral fitting analysis on a set of mock event lists, obtained using SIXTE. We have applied it to three hydrodynamical simulations of a Coma-like cluster that include the injection of turbulence. This allowed us to assess the ability of X-IFU to map five physical quantities in the cluster core: emission measure, temperature, metal abundance, velocity, and velocity dispersion. Finally, starting from our measurements maps, we computed the 2D structure function (SF) of emission measure fluctuations, ν and w, and compared them with those derived directly from the simulations. Results. All quantities match with the input projected values without bias; the systematic errors were below 5%, except for velocity dispersion whose error reaches about 15%. Moreover, all measurements prove to be statistically independent, indicating the robustness of the fitting method. Most importantly, we recover the slope of the SFs in the inertial regime with excellent accuracy, but we observe a systematic excess in the normalization of both SFν and SFw ascribed to the simplistic assumption of uniform and (bi-)Gaussian measurement errors. Conclusions. Our work highlights the excellent capabilities of Athena X-IFU in probing the thermodynamic and kinematic properties of the ICM. This will allow us to access the physics of its turbulent motions with unprecedented precision.


Sign in / Sign up

Export Citation Format

Share Document