Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition

2005 ◽  
Vol 44 (11) ◽  
pp. 2189 ◽  
Author(s):  
Klaus Schäfer ◽  
Klaus Brockmann ◽  
Jörg Heland ◽  
Peter Wiesen ◽  
Carsten Jahn ◽  
...  
2021 ◽  
Vol 14 (2) ◽  
pp. 945-959
Author(s):  
Yuan You ◽  
Samar G. Moussa ◽  
Lucas Zhang ◽  
Long Fu ◽  
James Beck ◽  
...  

Abstract. Fugitive emissions from tailings ponds contribute significantly to facility emissions in the Alberta oil sands, but details on chemical emission profiles and the temporal and spatial variability of emissions to the atmosphere are sparse, since flux measurement techniques applied for compliance monitoring have their limitations. In this study, open-path Fourier transform infrared spectroscopy was evaluated as a potential alternative method for quantifying spatially representative fluxes for various pollutants (methane, ammonia, and alkanes) from a particular pond, using vertical-flux-gradient and inverse-dispersion methods. Gradient fluxes of methane averaged 4.3 g m−2 d−1 but were 44 % lower than nearby eddy covariance measurements, while inverse-dispersion fluxes agreed to within 30 %. With the gradient fluxes method, significant NH3 emission fluxes were observed (0.05 g m−2 d−1, 42 t yr−1), and total alkane fluxes were estimated to be 1.05 g m−2 d−1 (881 t yr−1), representing 9.6 % of the facility emissions.


1974 ◽  
Vol 96 (3) ◽  
pp. 181-184 ◽  
Author(s):  
J. R. Cummins

To investigate the sources of acoustic radiation from a gas turbine exhaust, a one-seventh scale model has been constructed. The model geometrically scales the flow path downstream of the rotating parts including support struts and turning vanes. A discussion and comparison of different kinds of aerodynamic and acoustic scaling techniques are given. The effect of the temperature ratio between model and prototype is found to be an important parameter in comparing acoustical data.


1980 ◽  
Vol 34 (2) ◽  
pp. 171-173 ◽  
Author(s):  
D. G. Mead

Low temperature Fourier transform infrared measurements at 20 K on some wafers containing substitutional atomic carbon and oxygen are presented. Spectral subtraction techniques at 20 K indicate an increase of approximately 5 times in sensitivity compared to the room temperature evaluation of the carbon and oxygen concentrations.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


Sign in / Sign up

Export Citation Format

Share Document