Diffuse Reflectance FT-IR Characterization of Active Sites under Reaction Conditions: The Production of Oxygenates in the CO/H2 Reaction

1994 ◽  
Vol 48 (10) ◽  
pp. 1208-1212 ◽  
Author(s):  
J. J. Benítez ◽  
I. Carrizosa ◽  
J. A. Odriozola

The reactivity of a Lu2O3-promoted Rh/Al2O3 catalyst in the CO/H2 reaction is reported. Methane, heavier hydrocarbons, methanol, and ethanol are obtained. In situ DRIFTS has been employed to record the infrared spectra under the actual reaction conditions. The structure of the observed COads DRIFTS bands has been resolved into its components. The production of oxygenates (methanol and ethanol) has been correlated with the results of the deconvolution calculation. Specific sites for the production of methanol and ethanol in the CO/H2 reaction over a Rh,Lu2O3/Al2O3 catalyst are proposed.

1988 ◽  
Vol 42 (6) ◽  
pp. 945-951 ◽  
Author(s):  
Meg Martin Thompson ◽  
Richard Alan Palmer

Fourier transform photoacoustic and diffuse reflectance spectroscopies (FT-IR-PAS and -DRS) have been used in situ to monitor the reaction of SO2 (1.5% in N2) with particulate CaCO3 at temperatures up to 400°C (PAS) and 690°C (DRS). The PA spectra indicate that at 360°C SO2 is physisorbed on the CaCO3 surface. This species is readily desorbed by N2 purging. Under continuous SO2/N2 exposure at 400°C and above, the physisorbed species is shown by the DR data to be converted first to oxygen-bound and then to nonspecifically bound pyramidal SO3−. Reaction of the SO3= with SO2 to form SO4− begins at 400°C and is essentially complete at 690°C. The DR data further indicate that for the SO4−: (1) at temperatures between 400 and 640°C a monodentate C3 v species forms; (2) above 640°C the SO4− ion has nearly Td symmetry; and (3) upon subsequent cooling, the SO4− exhibits the characteristics of a chelating C2 v species.


Synthesis ◽  
2020 ◽  
Author(s):  
Roberto Sole ◽  
Vanessa Gatto ◽  
Silvia Conca ◽  
Lodovico Agostinis ◽  
Noemi Bardella ◽  
...  

Nowadays, the development of new approaches which smartly bypass the use of harsh reaction conditions and hazardous chemicals covers a pivotal role. In this research paper the synthesis, characterization and application of novel libraries of triazine bis-quaternary ammonium salts, employed as coupling agents to produce amides, is reported. Full characterization of the novel compounds by 1H and 13C NMR, FT-IR spectroscopy, ESI-HRMS and elemental analysis (EA) is provided. Furthermore, a comparison in terms of activity of the preformed triazine compounds versus in situ formulations has been evaluated for the formation of amides in the presence of phenylethylamine and different aliphatic or aromatic acids. A possible correlation between the chemical structure of the triazine and their reactivity for the formation of the triazine bis-quaternary ammonium salts is also reported. Moreover, best performing condensation agents have been further tested for the cross-linking of collagen powder as possible wet white tanning systems, for sustainable and environmentally friendly leather tanning.


2009 ◽  
Vol 66 ◽  
pp. 230-233 ◽  
Author(s):  
Tao Wei ◽  
Zhi Xiong Huang ◽  
Guo Rui Yang ◽  
Min Xian Shi

The PANI/PMN composite was prepared by one-step in-situ polymerization method and was characterized via FT-IR, XRD, SEM and TG. The results indicate that the best reaction conditions of in-situ polymerization are 0°C/24h.The PMN powder are entirely coated with PANI, when composite contains more than 60% PANI by volume. The steric hindrance effect of PMN powder decreases the crystallization degree of PANI which polymerizes on the surface of PMN powder in the process of in-situ polymerization. The main weight loss occurring between 300 and 480°C corresponds to the degradation of the PANI polymer chain.


Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 824
Author(s):  
Przemysław J. Jodłowski ◽  
Izabela Czekaj ◽  
Patrycja Stachurska ◽  
Łukasz Kuterasiński ◽  
Lucjan Chmielarz ◽  
...  

The objective of our study was to prepare Y-, USY- and ZSM-5-based catalysts by hydrothermal synthesis, followed by copper active-phase deposition by either conventional ion-exchange or ultrasonic irradiation. The resulting materials were characterized by XRD, BET, SEM, TEM, Raman, UV-Vis, monitoring ammonia and nitrogen oxide sorption by FT-IR and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). XRD data confirmed the purity and structure of the Y/USY or ZSM-5 zeolites. The nitrogen and ammonia sorption results indicated that the materials were highly porous and acidic. The metallic active phase was found in the form of cations in ion-exchanged zeolites and in the form of nanoparticle metal oxides in sonochemically prepared catalysts. The latter showed full activity and high stability in the SCR deNOx reaction. The faujasite-based catalysts were fully active at 200–400 °C, whereas the ZSM-5-based catalysts reached 100% activity at 400–500 °C. Our in situ DRIFTS experiments revealed that Cu–O(NO) and Cu–NH3 were intermediates, also indicating the role of Brønsted sites in the formation of NH4NO3. Furthermore, the results from our experimental in situ spectroscopic studies were compared with DFT models. Overall, our findings suggest two possible mechanisms for the deNOx reaction, depending on the method of catalyst preparation (i.e., conventional ion-exchange vs. ultrasonic irradiation).


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Eleonora Sočo ◽  
Dorota Papciak ◽  
Magdalena M. Michel ◽  
Dariusz Pająk ◽  
Andżelika Domoń ◽  
...  

(1) Hydroxyapatite (Hap), which can be obtained by several methods, is known to be a good adsorbent. Coal fly ash (CFA) is a commonly reused byproduct also used in environmental applications as an adsorbent. We sought to answer the following question: Can CFA be included in the method of Hap wet synthesis to produce a composite capable of adsorbing both heavy metals and dyes? (2) High calcium lignite CFA from the thermal power plant in Bełchatów (Poland) was used as the base to prepare CFA–Hap composites. Four types designated CFA–Hap1–4 were synthesized via the wet method of in situ precipitation. The synthesis conditions differed in terms of the calcium reactants used, pH, and temperature. We also investigated the equilibrium adsorption of Cu(II) and rhodamine B (RB) on CFA–Hap1–4. The data were fitted using the Langmuir, Freundlich, and Redlich–Peterson models and validated using R2 and χ2/DoF. Surface changes in CFA–Hap2 following Cu(II) and RB adsorption were assessed using SEM, SE, and FT-IR analysis. (3) The obtained composites contained hydroxyapatite (Ca/P 1.67) and aluminosilicates. The mode of Cu(II) and RB adsorption could be explained by the Redlich–Peterson model. The CFA–Hap2 obtained using CFA, Ca(NO3)2, and (NH4)2HPO4 at RT and pH 11 exhibited the highest maximal adsorption capacity: 73.6 mg Cu/g and 87.0 mg RB/g. (4) The clear advantage of chemisorption over physisorption was indicated by the Cu(II)–CFA–Hap system. The RB molecules present in the form of uncharged lactone were favorably adsorbed even on strongly deprotonated CFA–Hap surfaces.


1982 ◽  
Vol 36 (2) ◽  
pp. 155-157 ◽  
Author(s):  
D. B. Chase ◽  
R. L. Amey ◽  
W. G. Holtje

Diffuse reflectance FT-IR spectroscopy is used to obtain infrared spectra of paints directly on paper panels. The binder contribution to the spectrum can be effectively eliminated by spectral subtraction and the spectra of photodecomposition products are obtained. Comparison with reference spectra allows the determination of the photodecomposition mechanism.


1982 ◽  
Vol 36 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Larry F. Wieserman ◽  
David M. Hercules

This study compares the properties of γ-alumina, silica, and titania using ESCA and in situ FT-IR. The FWHM's of the O1s and metal 2p ESCA peaks increased systematically from titania to γ alumina; the O1s/metal 2p ESCA peak area ratios were nearly equal for γ-alumina and silica. For titania, however, the value was half that obtained for γ-alumina. In situ FT-IR showed hydroxyl bands with increasing frequencies from titania to silica. Alumina and titania form carbonate-type structures after exposure to CO at elevated temperatures. Silica exhibited no additional bands after CO treatment that could be assigned to physically adsorbed CO or carbonate-type structures. At 100°C, there is a direct correlation between the specific surface area and the intensity of infrared absorbance of the free-hydroxyl and the hydrogen-bonded hydroxyl bands for silica. The intensities of the infrared bands due to matrix modes were not affected by surface area.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


Sign in / Sign up

Export Citation Format

Share Document