scholarly journals Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases

PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001063
Author(s):  
Anand Sripada ◽  
Kapil Sirohi ◽  
Lidia Michalec ◽  
Lei Guo ◽  
Jerome T. McKay ◽  
...  

The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell–targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2−/− CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1–bound CSK restored ERK1/2 activation in Spry2−/− T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.

2020 ◽  
Author(s):  
Sonja Prade ◽  
David Wright ◽  
Nicola Logan ◽  
Alexandra R. Teagle ◽  
Hans Stauss ◽  
...  

AbstractAdoptive T cell transfer has improved the treatment of cancer patients. However, treatment of solid tumors is still challenging and new strategies that optimize T cell function and response duration in the tumor could be beneficial additions to cancer therapy. In this study, we deleted the intracellular phosphatase PTPN22 and the endogenous TCR α chain from human PBMC-derived T cells using CRISPR/Cas9 and transduced them with TCRs specific for a defined antigen. Deletion of PTPN22 in human T cells increased the secretion of IFNγ and GM-CSF in multiple donors. The cells retained a polyfunctional cytokine expression after re-stimulation and greater numbers of PTPN22KO T cells expressed inflammatory cytokines compared to unmutated control cells. PTPN22KO T cells seemed to be more polyfunctional at low antigen concentrations. Additionally, we were able to show that that PTPN22KO T cells were more effective in controlling tumor cell growth. This suggests that they might be more functional within the suppressive tumor microenvironment thereby overcoming the limitations of immunotherapy for solid tumors.


Rheumatology ◽  
2019 ◽  
Vol 58 (4) ◽  
pp. 719-728 ◽  
Author(s):  
Chuen-Miin Leu ◽  
Tzu-Sheng Hsu ◽  
Yu-Ping Kuo ◽  
Ming-Zong Lai ◽  
Po-Chun Liu ◽  
...  

Abstract Objective Deletion of Deltex1 (DTX1) in mice caused hyperactivation of T cells and lupus-like autoimmune syndromes, however, the association of DTX1 with human autoimmune diseases is totally unknown. This study investigated the role of DTX1 in human T cell functions and its correlation with disease activity in patients with SLE. Methods The influence of DTX1 on T cell function was evaluated using human primary cells. DTX1 expression in peripheral blood mononuclear cells (PBMCs) from healthy controls and SLE patients was measured by quantitative real-time PCR and the SLEDAI was used to assess disease activity. Results After stimulation with anti-CD3 and anti-CD28, silencing of DTX1 expression enhanced IFN-γ secretion by human T cells. The expression of DTX1 in PBMCs was significantly lower in 100 SLE patients than in 50 age- and sex-matched healthy controls (DTX1/glyceraldehyde 3-phosphate dehydrogenase, 0.452 vs 1.269, P < 0.001). The area under the receiver operator characteristics curve of the model was 0.737 (95% CI 0.658, 0.815). Intriguingly, a low DTX1 level in T cells led to high IFN-γ production in SLE patients and had a correlation with severe disease activity. In addition, low DTX1 expression in SLE patients was associated with active LN, lung involvement or hypocomplementaemia. Conclusion Knockdown DTX1 expression in human T cells reduced IFN-γ secretion. DTX1 expression in the PBMCs was significantly lower in SLE patients and had an inverse correlation with disease activity, indicating that the DTX1 level may be a good disease marker of SLE.


2018 ◽  
Vol 115 (30) ◽  
pp. 7783-7788 ◽  
Author(s):  
Esther Bandala-Sanchez ◽  
Naiara G. Bediaga ◽  
Ethan D. Goddard-Borger ◽  
Katrina Ngui ◽  
Gaetano Naselli ◽  
...  

CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lauren A. Callender ◽  
Elizabeth C. Carroll ◽  
Conor Garrod-Ketchley ◽  
Johannes Schroth ◽  
Jonas Bystrom ◽  
...  

Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8+ EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8+ T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8+ T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8+ EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8+ T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8+ EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.


2012 ◽  
Vol 6 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Jessica M. S. Jutzy ◽  
Salma Khan ◽  
Malyn May Asuncion-Valenzuela ◽  
Terry-Ann M. Milford ◽  
Kimberly J. Payne ◽  
...  

Molecules ◽  
2015 ◽  
Vol 20 (10) ◽  
pp. 19014-19026 ◽  
Author(s):  
Masao Goto ◽  
Manabu Wakagi ◽  
Toshihiko Shoji ◽  
Yuko Takano-Ishikawa

2015 ◽  
Vol 28 (1) ◽  
pp. 675-685 ◽  
Author(s):  
Belén Blanco ◽  
Carmen Herrero-Sánchez ◽  
Concepción Rodríguez-Serrano ◽  
Mercedes Sánchez-Barba ◽  
María Consuelo del Cañizo

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document