scholarly journals RNA-driven JAZF1-SUZ12 gene fusion in human endometrial stromal cells

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009985
Author(s):  
Sachin Kumar Gupta ◽  
Jocelyn Duen-Ya Jea ◽  
Laising Yen

Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes.

2018 ◽  
Vol 115 (52) ◽  
pp. E12295-E12304 ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Liming Luo ◽  
Laising Yen

One of the hallmarks of cancer is the formation of oncogenic fusion genes as a result of chromosomal translocations. Fusion genes are presumed to form before fusion RNA expression. However, studies have reported the presence of fusion RNAs in individuals who were negative for chromosomal translocations. These observations give rise to “the cart before the horse” hypothesis, in which the genesis of a fusion RNA precedes the fusion gene. The fusion RNA then guides the genomic rearrangements that ultimately result in a gene fusion. However, RNA-mediated genomic rearrangements in mammalian cells have never been demonstrated. Here we provide evidence that expression of a chimeric RNA drives formation of a specified gene fusion via genomic rearrangement in mammalian cells. The process is: (i) specified by the sequence of chimeric RNA involved, (ii) facilitated by physiological hormone levels, (iii) permissible regardless of intrachromosomal (TMPRSS2–ERG) or interchromosomal (TMPRSS2–ETV1) fusion, and (iv) can occur in normal cells before malignant transformation. We demonstrate that, contrary to “the cart before the horse” model, it is the antisense rather than sense chimeric RNAs that effectively drive gene fusion, and that this disparity can be explained by transcriptional conflict. Furthermore, we identified an endogenous RNA AZI1 that functions as the “initiator” RNA to induce TMPRSS2–ERG fusion. RNA-driven gene fusion demonstrated in this report provides important insight in early disease mechanisms, and could have fundamental implications in the biology of mammalian genome stability, as well as gene-editing technology via mechanisms native to mammalian cells.


2017 ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Liming Luo ◽  
Laising Yen

SummaryOne of the hallmarks of cancer is the formation of oncogenic fusion genes as a result of chromosomal translocations. Fusion genes are presumed to occur prior to fusion RNA expression. However, studies have reported the presence of fusion RNAs in individuals who were negative for chromosomal translocations. These observations give rise to “the cart before the horse” hypothesis, in which fusion RNA precedes the fusion gene and guides the genomic rearrangements that ultimately result in gene fusions. Yet RNA-mediated genomic rearrangement in mammalian cells has never been demonstrated. Here we provide evidence that expression of a chimeric RNA drives formation of a specified gene fusion via genomic rearrangement in mammalian cells. The process is (1) specified by the sequence of chimeric RNA involved, (2) facilitated by physiological hormone levels, (3) permissible regardless of intra-chromosomal (TMPRSS2-ERG) or inter-chromosomal (TMPRSS2-ETV1) fusion, and (4) can occur in normal cells prior to malignant transformation. We demonstrate that, contrary to “the cart before the horse” model, it is the antisense rather than sense chimeric RNAs that effectively drive gene fusion, and that this disparity can be explained by transcriptional conflict. Furthermore, we identified an endogenous RNA AZI1 that acts as the ‘initiator’ RNA to induce TMPRSS2-ERG fusion. RNA-driven gene fusion demonstrated in this report provides important insight in early disease mechanism, and could have fundamental implications in the biology of mammalian genome stability, as well as gene editing technology via mechanisms native to mammalian cells.


1995 ◽  
Vol 268 (1) ◽  
pp. R105-R111 ◽  
Author(s):  
M. Ming ◽  
T. T. Wang ◽  
S. Lachance ◽  
A. Delalandre ◽  
S. Carriere ◽  
...  

We transiently transfected fusion genes with the 5'-flanking region of the angiotensinogen gene linked to a bacterial chloramphenicol acetyltransferase (CAT) coding sequence as a reporter into opossum kidney (OK) cells. The addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) (10(-3)-10(-7) M) or forskolin (10(-9)-10(-5) M) stimulated the expression of the plasmid pOCAT [angiotensinogen nucleotide (N) -1498/+18] fusion gene in OK cells in a dose-dependent manner. The addition of dexamethasone (Dex) (10(-6) M) further enhanced the stimulatory effect of 8-BrcAMP or forskolin, whereas the addition of (R)-p-adenosine 3',5'-cyclic monophosphorothioate [(Rp)-cAMP[S], an inhibitor of cAMP-dependent protein kinase A, I and II] blocked the stimulatory effect of 8-BrcAMP. Furthermore, the addition of 8-BrcAMP (10(-3) M) or Dex (10(-6) M) or a combination of both stimulated the expression of pOCAT (angiotensinogen N -1138/+18), pOCAT (angiotensinogen N -960/+18), pOCAT (angiotensinogen N -814/+18), and pOCAT (angiotensinogen N -688/+18), but had no effect on the expression of pOCAT (angiotensinogen N -280/+18), pOCAT (angiotensinogen N -198/+18), pOCAT (angiotensinogen N -110/+18), pOCAT (angiotensinogen N -53/+18), and pOCAT (angiotensinogen N -35/+18). To further localize the putative cAMP-responsive element (CRE) in the angiotensinogen gene, we constructed fusion genes by inserting the DNA fragments angiotensinogen N -814 to N -689, angiotensinogen N -814 to N -761, and angiotensinogen N -760 to N -689 of the 5'-flanking region of the angiotensinogen gene upstream of the thymidine kinase (TK) promoter fused to a CAT gene and introduced them into OK cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 36 (5) ◽  
pp. 1032-1038 ◽  
Author(s):  
B Kong ◽  
Y Tian ◽  
W Zhu ◽  
S Su ◽  
Y Kan

The effects of cyclooxygenase 2 (COX-2) selective inhibitors on the proliferation of ectopic endometrial stromal cells in vitro were investigated. Ectopic endometrial stromal cells were treated with either celecoxib or nimesulide for 24 and 48 h. The results showed that (i) both celecoxib and nimesulide inhibited the proliferation of ectopic endometrial stromal cells in vitro in a time- and dose-dependent manner; (ii) the expression of prostaglandin E2 was significantly inhibited by both celecoxib and nimesulide in a dose-dependent manner; (iii) the percentage of apoptotic cells was significantly higher for cells treated with celecoxib or nimesulide than for untreated cells; and (iv) the percentage of the cells in the G0/G1 phase increased after the cells were treated with either agent in a dose-dependent manner. These data suggest that celecoxib and nimesulide inhibited proliferation of ectopic endometrial stromal cells by inducing apoptosis and blocking the cell cycle at the G0/G1 phase.


2014 ◽  
Vol 223 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Yoshihiro Joshua Ono ◽  
Yoshito Terai ◽  
Akiko Tanabe ◽  
Atsushi Hayashi ◽  
Masami Hayashi ◽  
...  

Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 426-437 ◽  
Author(s):  
Mohan Singh ◽  
Parvesh Chaudhry ◽  
Sophie Parent ◽  
Eric Asselin

Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.


2000 ◽  
pp. 477-480 ◽  
Author(s):  
B Gaffuri ◽  
L Airoldi ◽  
AM Di Blasio ◽  
P Vigano ◽  
AM Miragoli ◽  
...  

Although the mechanisms causing recurrent spontaneous abortion (RSA) remain frequently speculative, recent evidence indicates that a specific uterine immune-endocrine network plays a pivotal role in the continuation of pregnancy. We have recently demonstrated that an adhesion molecule of the immune system, named intercellular adhesion molecule (ICAM)-1, is markedly expressed at both protein and mRNA levels in endometrial stromal cells and is able to mediate their interaction with lymphoid cells. Moreover, we have shown that the soluble form of ICAM-1 (sICAM-1) can be released by the endometrium in a hormone-dependent manner. The present study was designed to determine whether surface and/or sICAM-1 expression by cultured endometrial stromal cells could be related to early pregnancy loss in patients with a history of unexplained RSA. Luteal-phase endometrial biopsies were obtained from eight patients who had experienced three or more consecutive unexplained RSAs in the first trimester and 12 control fertile women. Surface ICAM-1 was similarly expressed on luteal-phase endometrial cells obtained from women with and without a history of unexplained RSA. In contrast, the endometrial release of sICAM-1 was significantly lower in abortion-prone patients than in control women. sICAM-1 is a cytokine-inducible molecule able to interfere with several immunological responses and the reduced levels of the protein shed by the endometrium in patients who have suffered from unexplained RSAs may reflect the presence of an altered immunological environment during the early phases of pregnancy.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1921-1930 ◽  
Author(s):  
Tae Hoon Kim ◽  
Yanni Yu ◽  
Lily Luo ◽  
John P. Lydon ◽  
Jae-Wook Jeong ◽  
...  

The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PRcre/+Ptenf/+ heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Ptenf/+ mouse and 7.5 ± 0.43 lesions in the PRcre/+Ptenf/+ mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Ptenf/+ and PRcre/+Ptenf/+ mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206–treated mice compared with vehicle-treated mice. Furthermore, levels of FOXO1 and progesterone receptor increased in lesions of mice receiving MK-2206. These results demonstrate that heightened AKT activity plays an active role in the establishment of ectopic endometrial tissues.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mitsuhiro Nakamura ◽  
Ryusuke Murakami ◽  
Kaoru Abiko ◽  
Taito Miyamoto ◽  
Yoshimi Kitawaki ◽  
...  

Low-grade endometrial stromal sarcoma (LG-ESS) is a rare malignant disease and demonstrates various patterns in preoperative imaging. Therefore, accurate diagnosis is important. Given its unique form, we report a case of LG-ESS with a nodule-in-nodule appearance on preoperative imaging. A 41-year-old woman was referred to our department for further examination of a 45 mm diameter uterine corpus mass. Preoperative magnetic resonance imaging (MRI) revealed several small nodules within a larger nodule. T2-weighted images showed moderate-to-high signal intensity with focal bands of low signal intensity in the small nodules. The patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy. Histopathological findings of the small nodules showed densely concentrated endometrial stromal cells reminiscent of a proliferative phase endometrium with a concentric arrangement of small spiral arteriole-like vessels. The small nodules exhibited an expansile growth pattern and were surrounded by less densely concentrated endometrial stromal cells intermingled with the normal uterine myometrium. LG-ESS with smooth muscle differentiation and sex cord-like elements was partially observed. In summary, LG-ESS demonstrating a unique nodule-in-nodule appearance on preoperative imaging histopathologically comprised tumor cells of varying densities. Our current case suggests that preoperative diagnostic imaging with MRI may be useful.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4081-4081
Author(s):  
Yanara Marincevic-Zuniga ◽  
Johan Dahlberg ◽  
Sara Nilsson ◽  
Amanda Raine ◽  
Jonas Abrahamsson ◽  
...  

Abstract Background: Next generation sequencing allows for the detection of expressed fusion transcripts across the transcriptome and has spurred the discovery of many novel chimeric transcripts in various cancers. Structural chromosomal rearrangements that lead to fusion transcripts are a hallmark of acute lymphoblastic leukemia (ALL) and serve as markers for diagnosis and stratification of pediatric ALL patients into prognostically relevant subgroups. Improved delineation of structural alterations in ALL could provide additional information for prognosis in ALL and for improved stratification of patients into treatment groups. Methods: To identify novel fusion transcripts in primary pediatric ALL cells we performed whole transcriptome sequencing of 134 BCP and T-ALL patient samples collected at diagnosis. Our study include samples from patients with the well-known ALL subtypes t(12;21)ETV6-RUNX1, high hyperdiploid (51-67 chromosomes), t(9;22)BCR-ABL1, 11q23/MLL and dic(9;20), in addition to patients with undefined karyotype or non-recurrent cytogenetic aberrations ("undefined" and "other") (n=58). FusionCatcher was used for the detection of somatic fusion genes, followed by a stringent filtering pipeline including gene fusion validation by Sanger sequencing in order to reduce the number of false positives. Principal component analysis (PCA) of patients with fusion genes was performed using genome wide gene expression levels and DNA methylation levels (Infinium HumanMethylation450 bead array). Results: We identified and validated 60 unique fusion events in almost half of the analyzed patients (n=69). Of the identified fusion genes, 60% have not previously been reported in ALL or other forms of cancer. The majority of the fusion genes were found in a single patient, but 23% were recurrent, including known ALL fusion genes (n=10) and novel fusion genes (n=7). We found that BCP-ALL samples displayed a higher number of validated fusion genes (54%) compared to the T-ALL samples (28%) moreover in BCP-ALL patients with "other" and "undefined" karyotypes, we detected fusion genes in 71% and 61% of the samples, respectively. High hyperdiploid patients had the lowest rate of validated fusion genes (24%) compared to the other well-known subtypes, where we detected subtype-associated fusion genes in 97% of cases. We also identified promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5 and ZNF384 that fused with up to five different genes. Interestingly, PCA revealed molecularly distinct gene expression and DNA methylation signatures associated with these fusion partners. Conclusion: RNA-sequencing of pediatric ALL cells revealed a detailed view of the heterogeneous fusion gene landscape, identifying both known and novel fusion genes. By grouping samples based on recurrent gene fusion partners we are able to find shared gene expression and DNA methylation patterns compared to other subtypes of ALL, suggesting a shared molecular etiology within these distinct subgroups, offering novel insights into the delineation of fusion genes in ALL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document