scholarly journals Identification of a Caldariomyces fumago Mutant Secreting an Inactive Form of Chloroperoxidase Lacking the Heme Group and N-Glycans

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67857 ◽  
Author(s):  
Sonja Hüttmann ◽  
Markus Buchhaupt ◽  
Jens Schrader
2009 ◽  
Vol 59 (12) ◽  
pp. 1400-1404
Author(s):  
Marius Tudorascu ◽  
Spiridon Oprea ◽  
Afrodita Doina Marculescu ◽  
Stefania Tudorascu

The mechanism of the enzymatic iodination process of diethylmaleate and diethylfumarate (which present no miscibility with water) in the presence of lactoperoxidase, both in diluted hydrogen peroxide solution and in a generating system of hydrogen peroxide using ammonium and calcium iodides as halide sources in disperse system (after an ultrasonic pretreatment) was studied. The obtained sole product (diethyl-2, 3-diiodosuccinate) after the enzymatic iodination process was directly hydrolyzed to a tartaric acid present in an optically inactive form. The mechanism of obtaining the intermediate and final products and respectively, the existence of both D, L-tartaric acid and meso-tartaric acids (as lithium bitartrates) were also investigated.


2019 ◽  
Vol 16 (10) ◽  
pp. 1167-1174 ◽  
Author(s):  
Kamil J. Kuder ◽  
Tadeusz Karcz ◽  
Maria Kaleta ◽  
Katarzyna Kiec-Kononowicz

Background: : One of the best known to date GPCR class A (Rhodopsin) includes more than 100 orphan receptors for which the endogenous ligand is not known or is unclear. One of them is N-arachidonyl glycine receptor, named GPR18, a receptor that has been reported to be activated by Δ9-THC, endogenous cannabinoid receptors agonist anandamide and other cannabinoid receptor ligands suggesting it could be considered as third cannabinoid receptor. GPR18 activity, as well as its distribution might suggest usage of GPR18 ligands in treatment of endometriosis, cancer, and neurodegenerative disorders. Yet, so far only few GPR18 antagonists have been described, thus only ligand-based design approaches appear to be most useful to identify new ligands for this orphan receptor. Methods: : Main goal of this study, GPR18 inactive form homology model was built on the basis of the evolutionary closest homologous template: Human P2Y1 Receptor crystal structure. Results: : Obtained model was further evaluated and showed active/nonactive ligands differentiating properties with acceptable confidence. Moreover, it allowed for preliminary assessment of proteinligand interactions for a set of previously described ligands. Conclusion:: Thus collected data might serve as a starting point for a discovery of novel, active GPR18 blocking ligands.


Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 350-359
Author(s):  
Motomichi Fujita ◽  
Manabu Sasada ◽  
Takuya Iyoda ◽  
Satoshi Osada ◽  
Hiroaki Kodama ◽  
...  

Biofunctional peptide FNIII14, which is derived from the 14th fibronectin (FN) type III-like (FN-III) repeat of FN molecule, is capable of inhibiting cell adhesion to the extracellular matrix (ECM). This functional site is usually buried within the molecular structure of FN, but can be exposed by conformational changes and proteolytic cleavage. Peptide FNIII14 can induce a conformational change in β1-integrin from the active to the inactive form, causing functional inactivation. Based on this anti-adhesive activity, peptide FNIII14 exhibits therapeutic potential for several diseases such as metabolic diseases, organ fibrosis, and malignant tumors. Peptide FNIII14 blocks integrin-mediated signaling by a mechanism entirely distinct from that of conventional antagonisitic peptides, including Arg-Gly-Asp peptides that competitively inhibit the ECM binding of integrin.


2002 ◽  
Vol 76 (10) ◽  
pp. 5184-5197 ◽  
Author(s):  
Judit Jané-Valbuena ◽  
Laura A. Breun ◽  
Leslie A. Schiff ◽  
Max L. Nibert

ABSTRACT Entry of mammalian reovirus virions into target cells requires proteolytic processing of surface protein σ3. In the virion, σ3 mostly covers the membrane-penetration protein μ1, appearing to keep it in an inactive form and to prevent it from interacting with the cellular membrane until the proper time in infection. The molecular mechanism by which σ3 maintains μ1 in this inactive state and the structural changes that accompany σ3 processing and μ1 activation, however, are not well understood. In this study we characterized the early steps in σ3 processing and determined their effects on μ1 function and particle infectivity. We identified two regions of high protease sensitivity, “hypersensitive” regions located at residues 208 to 214 and 238 to 244, within which all proteases tested selectively cleaved σ3 as an early step in processing. Further processing of σ3 was required for infection, consistent with the fact that the fragments resulting from these early cleavages remained bound to the particles. Reovirus type 1 Lang (T1L), type 3 Dearing (T3D), and T1L × T3D reassortant virions differed in the sites of early σ3 cleavage, with T1L σ3 being cleaved mainly at residues 238 to 244 and T3D σ3 being cleaved mainly at residues 208 to 214. These virions also differed in the rates at which the early cleavages occurred, with cleavage of T1L σ3 occurring faster than cleavage of T3D σ3. Analyses using chimeric and site-directed mutants of recombinant σ3 identified carboxy-proximal residues 344, 347, and 353 as the primary determinants of these strain differences. The spatial relationships between these more carboxy-proximal residues and the hypersensitive regions were discerned from the σ3 crystal structure. The results indicate that proteolytic processing of σ3 during reovirus disassembly is a multistep pathway with a number of molecular determinants.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 5171-5179 ◽  
Author(s):  
Pascal Gelebart ◽  
Mona Anand ◽  
Hanan Armanious ◽  
Anthea C. Peters ◽  
Jennifer Dien Bard ◽  
...  

Abstract Aberrations of the Wnt canonical pathway (WCP) are known to contribute to the pathogenesis of various types of cancer. We hypothesize that these defects may exist in mantle cell lymphoma (MCL). Both the upstream and downstream aspects of WCP were examined in MCL cell lines and tumors. Using WCP-specific oligonucleotide arrays, we found that MCL highly and consistently expressed Wnt3 and Wnt10. β-catenin, a transcriptional factor that is a downstream target of WCP, is localized to the nucleus and transcriptionally active in all 3 MCL cell lines examined. By immunohistochemistry, 33 (52%) of 64 MCL tumors showed nuclear localization of β-catenin, which significantly correlated with the expression of the phosphorylated/inactive form of GSK3β (p-GSK3β; P = .011, Fisher). GSK3β inactivation is directly linked to WCP stimulation, since addition of recombinant sFRP proteins (a naturally occurring decoy for the Wnt receptors) resulted in a significant decrease in p-GSK3β. Down-regulation of DvL-2 (an upstream signaling protein in WCP) by siRNA or selective inhibition of β-catenin using quercetin significantly decreased cell growth in MCL cell lines. To conclude, WCP is constitutively activated in a subset of MCL and it appears to promote tumorigenesis in MCL.


2014 ◽  
Vol 48 (11) ◽  
pp. 1334-1341 ◽  
Author(s):  
J. Krych ◽  
J. L. Gebicki ◽  
L. Gebicka

2011 ◽  
Vol 18 (9) ◽  
pp. 1582-1585 ◽  
Author(s):  
Mookkan Prabakaran ◽  
Tao Meng ◽  
Fang He ◽  
Tan YunRui ◽  
Jia Qiang ◽  
...  

ABSTRACTThe protective immunity of baculovirus displaying influenza virus hemagglutinin (BacHA) against influenza 2009 H1N1 virus infection in a murine model was investigated. The results showed that mice vaccinated with live BacHA or an inactive form of adjuvanted BacHA had enhanced specific antibody responses and induced protective immunity against 2009 H1N1 virus infection, suggesting the potential of baculovirus as a live or inactivated vaccine.


2021 ◽  
Vol 14 (8) ◽  
pp. 733
Author(s):  
Julia Aresti-Sanz ◽  
Markus Schwalbe ◽  
Rob Rodrigues Pereira ◽  
Hjalmar Permentier ◽  
Sahar El Aidy

Methylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate. Nonetheless, very little is known about the factors that influence the drug’s absorption and bioavailability. Gut microbiota has been shown to reduce the bioavailability of a wide variety of orally administered drugs. Here, we tested the ability of small intestinal bacteria to metabolize methylphenidate. In silico analysis identified several small intestinal bacteria to harbor homologues of the human carboxylesterase 1 enzyme responsible for the hydrolysis of methylphenidate in the liver into the inactive form, ritalinic acid. Despite our initial results hinting towards possible bacterial hydrolysis of the drug, up to 60% of methylphenidate is spontaneously hydrolyzed in the absence of bacteria and this hydrolysis is pH-dependent. Overall, our results indicate that the stability of methylphenidate is compromised under certain pH conditions in the presence or absence of gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document