scholarly journals Δ12-Fatty Acid Desaturase from Candida parapsilosis Is a Multifunctional Desaturase Producing a Range of Polyunsaturated and Hydroxylated Fatty Acids

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e93322 ◽  
Author(s):  
Aleš Buček ◽  
Petra Matoušková ◽  
Hana Sychrová ◽  
Iva Pichová ◽  
Olga Hrušková-Heidingsfeldová
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zolian S. Zoong Lwe ◽  
Ruth Welti ◽  
Daniel Anco ◽  
Salman Naveed ◽  
Sachin Rustgi ◽  
...  

AbstractUnderstanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


1994 ◽  
Vol 40 (10) ◽  
pp. 844-850 ◽  
Author(s):  
Peter Kämpfer ◽  
Klaus Blasczyk ◽  
Georg Auling

A chemotaxonomic study was carried out on representative strains of 13 Aeromonas genomic species. Quinone, polyamine, and fatty acid patterns were found to be very useful for an improved characterization of the genus and an improved differentiation from members of the families Enterobacteriaceae and Vibrionaceae. The Q-8-benzoquinone was the predominant ubiquinone, and putrescine and diaminopropane were the major poly amines of the genus. The fatty acid patterns of 181 strains, all characterized by DNA–DNA hybridization, showed a great homogeneity within the genus, with major amounts of hexadecanoic acid (16:0), hexadecenoic acid (16:1), and octadecenoic acid (18:1), and minor amounts of the hydroxylated fatty acids (3-OH 13:0, 2-OH 14:0, 3-OH 14:0) in addition to some iso and anteiso branched fatty acids (i-13:0, i-17:1, i-17:0, and a-17:0). Although some differences in fatty acid profiles between the genomic species could be observed, a clearcut differentiation of all species was not possible.Key words: Aeromonas, polyamines, quinones, fatty acids, differentiation.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1983-1990 ◽  
Author(s):  
Takahiro Oura ◽  
Susumu Kajiwara

Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and α-linolenic acid. These fatty acids are synthesized by catalytic reactions of Δ12 and ω3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast ω3 fatty acid desaturase gene. The deduced protein encoded by the Saccharomyces kluyveri FAD3 gene (Sk-FAD3) consists of 419 amino acids, and shows 30–60 % identity with Δ12 fatty acid desaturases of several eukaryotic organisms and 29–31 % identity with ω3 fatty acid desaturases of animals and plants. During Sk-FAD3 expression in Saccharomyces cerevisiae, α-linolenic acid accumulated only when linoleic acid was added to the culture medium. The disruption of Sk-FAD3 led to the disappearance of α-linolenic acid in S. kluyveri. These findings suggest that Sk-FAD3 is the only ω3 fatty acid desaturase gene in this yeast. Furthermore, transcriptional expression of Sk-FAD3 appears to be regulated by low-temperature stress in a manner different from the other fatty acid desaturase genes in S. kluyveri.


2006 ◽  
Vol 131 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Mauricio A. Cañoles ◽  
Randolph M. Beaudry ◽  
Chuanyou Li ◽  
Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 134-135
Author(s):  
Artemis P Simopoulos

Abstract Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids to which their genes were programmed to respond. Studies on gene-nutrient interactions using methods from molecular biology and genetics have clearly shown that there are genetic differences in the population, as well as differences in the frequency of genetic variations that interact with diet and influence the growth and development of humans and animals, as well as overall health and chronic disease. Nutrigenetics refers to studies on the role of genetic variants and their response to diet. For example, persons with genetic variants in the metabolism of omega-6 and omega-3 fatty acids have different levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) based on the type of genetic variant in the Fatty Acid Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2). At the same level of linoleic acid (LA) and alpha-linolenic acid (ALA) a person with a genetic variant that increases the activity of the FADS1 will have a higher AA in the red cell membrane phospholipids and a higher risk for obesity and cardiovascular disease. Nutrigenomics refers to how nutrients (diets) influence the expression of genes. For example, diets rich in omega-3 fatty acids, EPA and DHA decrease the expression of inflammatory genes and as a result decrease the risk of obesity and cardiovascular disease. Thus, through studies on Nutrigenetics/Nutrigenomics nutritional science stands at its “golden threshold” where personalized nutrition is the future, to improve an individual’s health.


2020 ◽  
pp. 1-26
Author(s):  
Yan Wang ◽  
Yiwei Tang ◽  
Ye Ji ◽  
Wenhui Xu ◽  
Naeem Ullah ◽  
...  

Abstract In this study, we analysed the effects of single nucleotide polymorphism (SNP) rs174547 (T/C) in the fatty acid desaturase 1 (FADS1) gene on long-chain polyunsaturated fatty acid levels. Four databases were searched to retrieve related literature with keywords such as fatty acid, SNP, FADS1, and rs174547. A meta-analysis of the data was performed using Stata12.0 software, including summary statistics, test for heterogeneity, evaluation of publication bias, subgroup analysis, and sensitivity analysis. The associations between rs174547 in FADS1 and seven types of fatty acids, and delta-5 (D5D) and delta-6 fatty acid desaturase (D6D) activity were assessed based on the pooled results from 11 manuscripts. A total of 3713 individuals (1529 TT and 2184 TC+CC) were included. The results demonstrated that minor C allele carriers of rs174547 had higher linoleic acid (LA; P < 0.001) and α-linolenic acid (P = 0.020) levels, lower gamma linoleic acid (GLA; P = 0.001) and arachidonic acid (P = 0.024) levels, and lower D5D (P = 0.005) and D6D (P = 0.004) activities than the TT genotype group. Stratification analysis showed that minor C allele carriers of rs174547 had higher LA and lower GLA levels and lower D6D activities in plasma (LA, P < 0.001; GLA, P < 0.001; D6D activity, P < 0.001) samples and in Asian populations (LA, P < 0.001; GLA, P = 0.001; D6D activity, P = 0.001) than the TT genotype group. In conclusion, minor C allele carriers of the SNP rs174547 were associated with decreased activity of D5D and D6D.


Nematology ◽  
2004 ◽  
Vol 6 (6) ◽  
pp. 783-795 ◽  
Author(s):  
Klaus Becker ◽  
James Dick ◽  
Douglas Tocher ◽  
Christian Schlechtriem

AbstractThe free-living nematode Panagrellus redivivus can be mass produced in monoxenic solid culture on Saccharomyces cerevisiae and therefore could be useful as a live food for marine fish or crustacean larvae in the rapidly expanding aquaculture industry. However, this will depend on their lipid and fatty acid composition and so this was investigated in mass produced P. redivivus grown on S. cerevisiae in three different media. Live nematodes were also incubated with [1-14C]-labelled fatty acids and the desaturation and elongation of the fatty acids were determined. The combined results from the growth trials on different media and the metabolic studies with labelled fatty acids indicated the presence of Δ9, Δ12, Δ6 and Δ5 fatty acid desaturase activities, and elongase activities active towards C18, C16 and shorter chain fatty acids. The presence of Δ15, and therefore the ability to produce n-3 polyunsaturated fatty acids, was suggested by the compositional data, but could not be conclusively established from metabolic studies.


2020 ◽  
Author(s):  
Rita C. Kuo ◽  
Huan Zhang ◽  
James D. Stuart ◽  
Anthony A. Provatas ◽  
Linda Hannick ◽  
...  

AbstractAlgal lipids are important fuel storage molecules in algae and a currency for energy transfer in the marine food chain as well as materials for biofuel production, but their production and regulation are not well understood in many species including the common coastal phytoplankton Eutreptiella spp. Here, using gas chromatography-tandem mass spectrometry (GC/MS/MS), we discovered 24 types of fatty acids (FAs) in Eutreptiella sp. with a relatively high proportion of long chain unsaturated FAs. The abundances of C16, C18 and saturated FAs decreased when phosphate in the culture medium was depleted. Among the 24 FAs, docosahexaenoic acid (22:6) and eicosapentaenoic acid (20:5) were the most abundant, suggesting that Eutreptiella sp. preferentially invests in the synthesis of very long chain polyunsaturated fatty acids (VLCPFA). Further transcriptomic analysis revealed that Eutreptiella sp. likely synthesizes VLCPFA via Δ8 pathway and uses type I and II fatty acid synthases. Using RT-qPCR, we found that some of the lipid production genes, such as β-ketoacyl-ACP reductase, fatty acid desaturase, acetyl-CoA carboxylase, acyl carrier protein, Δ8 desaturase, and Acyl-ACP thioesterase, were more actively expressed during light period. Besides, two carbon-fixation genes were more highly expressed in the high lipid illuminated cultures, suggesting a linkage between photosynthesis and lipid production.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shajahan Ferosekhan ◽  
Hanlin Xu ◽  
Serhat Turkmen ◽  
Ana Gómez ◽  
Juan Manuel Afonso ◽  
...  

Abstract Previous studies have shown that it is possible to nutritionally program gilthead seabream offspring through fish oil (FO) replacement by vegetable oils (VO) in the broodstock diet, to improve their ability to grow fast when fed low fish meal (FM) and FO diets during grow-out phase. However, in those studies broodstock performance was reduced by the VO contained diet. Therefore, the present study aimed to determine if it is possible to replace FO by a mixture of FO and rapeseed oil (RO) with a specific fatty acid profile in broodstock diets, without altering gilthead seabream broodstock reproductive performance. Besides, the study also aimed to evaluate the reproductive performance of broodstock with different expression of fatty acid desaturase 2 gene (fads2) a key enzyme in synthesis of long chain polyunsaturated fatty acids. For that purpose, broodfish having either a high (HD) or low (LD) expression of fads2 were fed for three months during the spawning season with two diets containing different fatty acid profiles and their effects on reproductive hormones, fecundity, sperm and egg quality, egg biochemical composition and fads2 expression were studied. The results showed that blood fads2 expression in females, which tended to be higher than in males, was positively related to plasma 17β-estradiol levels. Moreover, broodstock with high blood fads2 expression showed a better reproductive performance, in terms of fecundity and sperm and egg quality, which was correlated with female fads2 expression. Our data also showed that it is feasible to reduce ARA, EPA and DHA down to 0.43, 6.6 and 8.4% total fatty acids, respectively, in broodstock diets designed to induce nutritional programming effects in the offspring without adverse effects on spawning quality. Further studies are being conducted to test the offspring with low FM and FO diets along life span.


Sign in / Sign up

Export Citation Format

Share Document