scholarly journals Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0185690 ◽  
Author(s):  
Junfang Zhao ◽  
Feiyu Pu ◽  
Yunpeng Li ◽  
Jingwen Xu ◽  
Ning Li ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


1990 ◽  
Vol 62 (3) ◽  
pp. 227-236 ◽  
Author(s):  
Jari Peltonen ◽  
Tuomo Karvonen ◽  
Erkki Kivi

Interrelationships between climatic factors and spring wheat yield and quality were examined with 21 years field experiments. The formation of gluten was less at dry conditions (total precipitation under 50 mm) and total precipitation exceeded 130—140 mm. The optimum daily temperature for gluten production was some 15—17°C during grain filling. The gluten content decreased if daily minimum and maximum temperatures exceeded 11—12°C and 21—22°C, respectively. The effect of temperature and rainfall were not, however, significant in early maturing varieties. The climatic factors and grain yield did not correlate. Grain yield and protein yield had strong positive relationship, which was perhaps a consequence of supply and utilization of nitrogen. It is concluded that climatic factors affecting yield to quality ration in wheat may be excessive rains before heading and high temperature during grain filling. Interaction between weather and nitrogen are discussed to optimize correct timing of nitrogen fertilization for amount and quality of economic wheat yield.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Yuxin Dong ◽  
Bingqi Wei ◽  
Lixue Wang ◽  
Yuhan Zhang ◽  
Huaying Zhang ◽  
...  

Growing spring wheat in Inner Mongolia is challenging because of the short growing period, dry-hot winds, and heat-forced maturity. There are also problems with growing winter wheat varieties, such as frost damage, spring droughts, and “late spring cold”. These factors have restricted efforts to increase yields. In order to address these challenges, this study adopted a “spring wheat winter-sowing” planting model for growing wheat in the Hetao Plain Irrigation District in Inner Mongolia and studied wheat varieties with different vernalization requirements through three consecutive field trials. The effects of different sowing dates were analyzed on seed germination and seedling emergence, growth, material accumulation, and yield formation, and the differences were characterized from traditional spring wheat. The results indicated that delaying the sowing date increased the spring emergence rate of the wheat varieties. The winter-seeded spring wheat germinated and ripened after three and seven days, respectively, earlier than the spring-seeded. The grain yield for the winter-seeded wheat was parallel to the spring-seeded wheat. Compared with the spring-seeded wheat, the winter-seeded wheat displayed less panicles, but greater grains per spike, and a 1000-grain weight. When seeded in winter, Yongliang 4 performed better than Ningdong 11 and Henong 7106 in terms of the emergence rate, material accumulation, and grain yield. The best seeding time for the winter-seeded spring wheat in the Hetao Irrigation District of Inner Mongolia is early November.


2011 ◽  
Vol 37 (10) ◽  
pp. 1752-1762 ◽  
Author(s):  
Yong ZHANG ◽  
Shi-Zhao LI ◽  
Zhen-Lu WU ◽  
Wen-Xiong YANG ◽  
Ya-Xiong YU ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajeet Kumar Pandey ◽  
Vinod Kumar Mishra ◽  
Ramesh Chand ◽  
Sudhir Navathe ◽  
Neeraj Budhlakoti ◽  
...  

AbstractSpot blotch and terminal heat are two of the most important stresses for wheat in South Asia. A study was initiated to explore the use of spelt (Triticum spelta) to improve tolerance to these stresses in spring wheat (T. aestivum). We assessed 185 recombinant inbred lines (RILs) from the cross T. spelta (H + 26) × T. aestivum (cv. HUW234), under the individual stresses and their combination. H + 26 showed better tolerance to the single stresses and also their combination; grain yield in RILs was reduced by 21.9%, 27.7% and 39.0% under spot blotch, terminal heat and their combined effect, respectively. However, phenological and plant architectural traits were not affected by spot blotch itself. Multivariate analysis demonstrated a strong negative correlation between spikelet sterility and grain yield under spot blotch, terminal heat and their combination. However, four recombinant lines demonstrated high performance under both stresses and also under their combined stress. The four lines were significantly superior in grain yield and showed significantly lower AUDPC than the better parent. This study demonstrates the potential of spelt wheat in enhancing tolerance to spot blotch and terminal heat stresses. It also provides comprehensive evidence about the expression of yield and phenological traits under these stresses.


2021 ◽  
Author(s):  
Donald Veverka ◽  
Amitava Chatterjee ◽  
Melissa Carlson

Sign in / Sign up

Export Citation Format

Share Document