scholarly journals Mathematical modelling of oxygen gradients in stem cell-derived liver tissue

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0244070
Author(s):  
Joseph A. Leedale ◽  
Baltasar Lucendo-Villarin ◽  
Jose Meseguer-Ripolles ◽  
Alvile Kasarinaite ◽  
Steven D. Webb ◽  
...  

A major bottleneck in the study of human liver physiology is the provision of stable liver tissue in sufficient quantity. As a result, current approaches to modelling human drug efficacy and toxicity rely heavily on immortalized human and animal cell lines. These models are informative but do possess significant drawbacks. To address the issues presented by those models, researchers have turned to pluripotent stem cells (PSCs). PSCs can be generated from defined genetic backgrounds, are scalable, and capable of differentiation to all the cell types found in the human body, representing an attractive source of somatic cells for in vitro and in vivo endeavours. Although unlimited numbers of somatic cell types can be generated in vitro, their maturation still remains problematic. In order to develop high fidelity PSC-derived liver tissue, it is necessary to better understand the cell microenvironment in vitro including key elements of liver physiology. In vivo a major driver of zonated liver function is the oxygen gradient that exists from periportal to pericentral regions. In this paper, we demonstrate how cell culture conditions for PSC-derived liver sphere systems can be optimised to recapitulate physiologically relevant oxygen gradients by using mathematical modelling. The mathematical model incorporates some often-understated features and mechanisms of traditional spheroid systems such as cell-specific oxygen uptake, media volume, spheroid size, and well dimensions that can lead to a spatially heterogeneous distribution of oxygen. This mathematical modelling approach allows for the calibration and identification of culture conditions required to generate physiologically realistic function within the microtissue through recapitulation of the in vivo microenvironment.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angela Maria Cozzolino ◽  
Valeria Noce ◽  
Cecilia Battistelli ◽  
Alessandra Marchetti ◽  
Germana Grassi ◽  
...  

In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that,in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines asin vitromodels of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.


2020 ◽  
Vol 21 (13) ◽  
pp. 4804
Author(s):  
Vincent van Duinen ◽  
Wendy Stam ◽  
Eva Mulder ◽  
Farbod Famili ◽  
Arie Reijerkerk ◽  
...  

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.


2021 ◽  
Vol 8 (11) ◽  
pp. 185
Author(s):  
Amit Panwar ◽  
Prativa Das ◽  
Lay Poh Tan

Liver-associated diseases and tissue engineering approaches based on in vitro culture of functional Primary human hepatocytes (PHH) had been restricted by the rapid de-differentiation in 2D culture conditions which restricted their usability. It was proven that cells growing in 3D format can better mimic the in vivo microenvironment, and thus help in maintaining metabolic activity, phenotypic properties, and longevity of the in vitro cultures. Again, the culture method and type of cell population are also recognized as important parameters for functional maintenance of primary hepatocytes. Hepatic organoids formed by self-assembly of hepatic cells are microtissues, and were able to show long-term in vitro maintenance of hepato-specific characteristics. Thus, hepatic organoids were recognized as an effective tool for screening potential cures and modeling liver diseases effectively. The current review summarizes the importance of 3D hepatic organoid culture over other conventional 2D and 3D culture models and its applicability in Liver tissue engineering.


2018 ◽  
Vol 27 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Marta Magatti ◽  
Elsa Vertua ◽  
Anna Cargnoni ◽  
Antonietta Silini ◽  
Ornella Parolini

Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.


1986 ◽  
Vol 82 (1) ◽  
pp. 263-280
Author(s):  
R.A. Clark ◽  
J.M. Folkvord ◽  
L.D. Nielsen

Recently, we have presented evidence that proliferating blood vessels produce and deposit fibronectin in situ during the angiogenesis of wound repair. This report extends these observations by demonstrating that human endothelial cells from both large and small vessels depend on fibronectin for their adherence in vitro. Endothelial cells were grown from human umbilical veins (HUVEC) by the method of Gimbrone and from the microvasculature of human omentum by the method of Kern, Knedler and Eckel. Second-passage cells were plated into microtitre wells that had been coated with 100 micrograms ml-1 of fibronectin, types I and III collagen, type IV collagen or laminin. After a 3-h incubation, adherent cells were solubilized with Zap-Isoton and quantified on a Coulter Counter. Under normal culture conditions HUVEC showed no preference for fibronectin substrates while microvascular cells always demonstrated a striking preference for fibronectin substrates. However, when HUVEC were exposed to 2.5 or 25 micrograms ml-1 of cycloheximide for 4 h before and during the adherence assays, the adherence to fibronectin was 50–200% greater than to types I and III collagen. Immunofluorescence studies showed that while HUVEC expressed a large quantity of surface fibronectin, microvascular cells expressed very little. Metabolic labelling studies confirmed that HUVEC cultures had substantial quantities of fibronectin in their cell layer while microvascular cells did not. In antibody blocking experiments, preincubation of fibronectin-coated surfaces with anti-fibronectin antibodies totally blocked microvascular cell adhesion but only abrogated HUVEC adherence by 50%, presumably since these latter cells were able to deposit additional fibronectin onto the surface during the 3 h assay period. In the presence of cycloheximide anti-fibronectin antibodies totally blocked HUVEC adherence. These results demonstrate that both endothelial cell types rely, at least in part, on fibronectin for adherence in vitro. HUVEC can synthesize, secrete and deposit enough fibronectin for their adherence in vitro, while microvascular cells rely on an exogenous source of fibronectin under these culture conditions. Thus, the increased blood vessel fibronectin observed during angiogenesis in vivo may mediate adherence of the proliferating and migrating endothelial cells.


1971 ◽  
Vol 133 (3) ◽  
pp. 520-533 ◽  
Author(s):  
Teresita Tan ◽  
Julius Gordon

Spleen cells of unprimed CBA mice were shown to produce anti-sheep red blood cell antibodies comparable in amount in vivo and in vitro. Under identical culture conditions spleen cells of C57BL mice did not respond. CBA spleen cells, passed through columns of cotton wool (CBAf), were equally inactive in vitro. However combined cultures containing both CBAf and C57BL cells yielded as many or more plaque-forming cells than the same number of unfractionated CBA spleen cells. Analysis of the contribution of each cell population to the synthesis of antibody in the combined cultures has disclosed the participation of three cell types. A thymus-dependent, radiosensitive cell was derived from the CBAf population, while the C57BL was the source of the precursor of the antibody-forming cell and of a radioresistant cell. The latter two were partially separated in a Staput apparatus.


2021 ◽  
Vol 22 (19) ◽  
pp. 10430
Author(s):  
Sacha Robert ◽  
Marcus Flowers ◽  
Brenda M. Ogle

Differentiation of pluripotent stem cells to cardiomyocytes is influenced by culture conditions including the extracellular matrices or similar synthetic scaffolds on which they are grown. However, the molecular mechanisms that link the scaffold with differentiation outcomes are not fully known. Here, we determined by immunofluorescence staining and mass spectrometry approaches that extracellular matrix (ECM) engagement by mouse pluripotent stem cells activates critical components of canonical wingless/integrated (Wnt) signaling pathways via kinases of the focal adhesion to drive cardiomyogenesis. These kinases were found to be differentially activated depending on type of ECM engaged. These outcomes begin to explain how varied ECM composition of in vivo tissues with development and in vitro model systems gives rise to different mature cell types, having broad practical applicability for the design of engineered tissues.


Reproduction ◽  
2004 ◽  
Vol 127 (6) ◽  
pp. 679-688 ◽  
Author(s):  
Paul A Fowler ◽  
Norah Spears

Gonadotrophin surge-attenuating factor (GnSAF) bioactivity (the suppression of GnRH-induced but not basal LH and FSH secretion from pituitary gonadotrophs) is produced by granulosa cells in vitro. Previous studies to investigate this bioactivity used dispersed granulosa cells which lack some cell types and the structural components of the follicle in vivo. The aim of this study, therefore, was to investigate whether intact rodent follicle culture was a suitable model for the study of the production of GnSAF bioactivity, allowing GnSAF to be investigated in a more physiologically realistic environment while still retaining culture conditions from which, as with granulosa cell cultures, extraneous factors can be excluded. Follicles from 16-day-old rats and 21-day-old mice were cultured for 3–6 days in the presence or absence of FSH and/or LH. The follicle-conditioned medium, and matching samples of unconditioned culture medium were added to our established rat pituitary monolayer GnSAF bioassay. Both mouse and rat intact follicles produced GnSAF bioactivity, reducing GnRH-induced LH secretion significantly. GnSAF output from the mouse follicles was highest during days 1–3 of culture, when follicles were at an early antral stage of development, and fell on days 4–6 as the follicles grew to the mid antral stage. While the stimulatory effects of FSH on rat follicle GnSAF secretion was dose-dependent, LH alone did not increase GnSAF production. An antibody against human GnSAF blocked GnSAF bioactivity produced by rat follicles, and recognised proteins within the expected pI and molecular weight range for GnSAF in two-dimensional gels of rat follicle-conditioned medium, showing a good homology between rodent and human GnSAF proteins. In conclusion, the release of GnSAF bioactivity is principally from small follicles stimulated by FSH. Therefore, intact rodent follicle culture systems offer an excellent model for the investigation of factors controlling GnSAF production under relatively physiological conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 918
Author(s):  
Wee Kiat Ong ◽  
Smarajit Chakraborty ◽  
Shigeki Sugii

Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


Sign in / Sign up

Export Citation Format

Share Document