scholarly journals Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244305
Author(s):  
Prakash M. Niraula ◽  
Xuefeng Zhang ◽  
Dragica Jeremic ◽  
Katherine S. Lawrence ◽  
Vincent P. Klink

The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.

2005 ◽  
Vol 30 (1) ◽  
pp. 21-25
Author(s):  
Dinaelia Iva das Neves ◽  
Shiou Pin Huang

Heterodera glycines and Helicotylenchus dihystera were the two most abundant plant-parasitic nematodes found in two H. glycines race 3-infested fields, Chapadão do Céu, MS and Campo Alegre, MG. These fields had been planted with resistant (R) and susceptible (S) plants to cyst nematodes. In the first field, soybean (Glycine max) FT-Cristalina (S) was susceptible to H. glycines but resistant to H. dihystera, while GOBR93 122243 (R) was just the opposite. In the second field, M-Soy 8400 (R) was more resistant to the spiral nematode than M-Soy8411 (S), but the resistance to the cyst nematode was not different between the two genotypes. The total abundance of nematodes was not different between the susceptible and resistant plants in the two fields, suggesting that H. dihystera and/or bacterial feeders and other trophic groups replaced the reduced abundance of the cyst nematodes in resistant plants. Bacterial feeders acted as a compensatory factor to plant-parasitic nematodes in ecological function. The populations of fungal feeders were higher in GOBR93 122243 (R) than in susceptible FT-Cristalina (S) in Chapadão do Céu, but lower in M-Soy 8400 (R) than in M-Soy 8411 (S) in Campo Alegre. This is being attributed to the different periods of soil samplings that were made at the florescent period in the first field, and at the final growing cycle in the second field. Only four nematodes, H. glycines, H. dihystera, Acrobeles sp. and Panagrolaimus sp. dominated the nematode resistant community GOBR93 122243 (R) in Chapadão do Céu, but dominance was shared by ten genera in Campo Alegre, which explains why the five diversity indexes (S, d, Ds, H' and T) were higher in resistant plants than in susceptible plants in field two.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Sugiura ◽  
Ayumi Nagase ◽  
Sayoko Oiki ◽  
Bunzo Mikami ◽  
Daisuke Watanabe ◽  
...  

Abstract Saprophytic bacteria and plants compete for limited nutrient sources. Bacillus subtilis grows well on steamed soybeans Glycine max to produce the fermented food, natto. Here we focus on bacterial responses in conflict between B. subtilis and G. max. B. subtilis cells maintained high growth rates specifically on non-germinating, dead soybean seeds. On the other hand, viable soybean seeds with germinating capability attenuated the initial growth of B. subtilis. Thus, B. subtilis cells may trigger saprophytic growth in response to the physiological status of G. max. Scanning electron microscope observation indicated that B. subtilis cells on steamed soybeans undergo morphological changes to form apertures, demonstrating cell remodeling during saprophytic growth. Further, transcriptomic analysis of B. subtilis revealed upregulation of the gene cluster, yesOPQR, in colonies growing on steamed soybeans. Recombinant YesO protein, a putative, solute-binding protein for the ATP-binding cassette transporter system, exhibited an affinity for pectin-derived oligosaccharide from plant cell wall. The crystal structure of YesO, in complex with the pectin oligosaccharide, was determined at 1.58 Å resolution. This study expands our knowledge of defensive and offensive strategies in interspecies competition, which may be promising targets for crop protection and fermented food production.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 806
Author(s):  
Moez Maghrebi ◽  
Elena Baldoni ◽  
Giorgio Lucchini ◽  
Gianpiero Vigani ◽  
Giampiero Valè ◽  
...  

Two rice accessions, Capataz and Beirao, contrasting for cadmium (Cd) tolerance and root retention, were exposed to a broad range of Cd concentrations (0.01, 0.1, and 1 μM) and analyzed for their potential capacity to chelate, compartmentalize, and translocate Cd to gain information about the relative contribution of these processes in determining the different pathways of Cd distribution along the plants. In Capataz, Cd root retention increased with the external Cd concentration, while in Beirao it resulted independent of Cd availability and significantly higher than in Capataz at the lowest Cd concentrations analyzed. Analysis of thiol accumulation in the roots revealed that the different amounts of these compounds in Capataz and Beirao, as well as the expression levels of genes involved in phytochelatin biosynthesis and direct Cd sequestration into the vacuoles of the root cells, were not related to the capacity of the accessions to trap the metal into the roots. Interestingly, the relative transcript abundance of OsHMA2, a gene controlling root-to-shoot Cd/Zn translocation, was not influenced by Cd exposure in Capataz and progressively increased in Beirao with the external Cd concentration, suggesting that activity of the OsHMA2 transporter may differentially limit root-to-shoot Cd/Zn translocation in Capataz and Beirao.


Author(s):  
Kangfu Yu ◽  
Lorna Woodrow ◽  
M. Chun Shi

AAC Richard is a food grade soybean [Glycine max (L.) Merr] cultivar with yellow hilum, high protein concentration, and good processing quality for foreign and domestic soymilk, tofu, and miso markets. It has resistance to SCN (soybean cyst nematode) (Heterodera Glycines Ichinohe). AAC Richard was developed at the Agriculture and Agri-Food Canada (AAFC) Harrow Research and Development Centre (Harrow-RDC), Harrow, Ontario and is adapted to areas of southwest Ontario with 3100 or more crop heat units and has a relative maturity of 2.3 (MG 2.3).


1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


1998 ◽  
Vol 37 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M.M.H Huisman ◽  
H.A Schols ◽  
A.G.J Voragen

2016 ◽  
Vol 29 (11) ◽  
pp. 889-901 ◽  
Author(s):  
Ely Oliveira-Garcia ◽  
Holger B. Deising

Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta–differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 119 ◽  
Author(s):  
Daniel J. Cosgrove

The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Krishan Mohan Rai ◽  
Vimal Kumar Balasubramanian ◽  
Cassie Marie Welker ◽  
Mingxiong Pang ◽  
Mei Mei Hii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document