scholarly journals Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0244699
Author(s):  
Zhe Ji ◽  
Michele Tinti ◽  
Michael A. J. Ferguson

The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1–6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1–6 GlcNAc-transferase complex.

2020 ◽  
Author(s):  
Zhe Ji ◽  
Michele Tinti ◽  
Michael A.J. Ferguson

AbstractThe first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc : PI α1-6 GlcNAc-transferase. This enzyme has been shown to be a complex of at least seven subunits in mammalian cells and a similar complex of homologous subunits has been postulated in yeast. Homologs of most of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and partner proteins TbGPI15, TbGPI9, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc : PI α1-6 GlcNAc-transferase complex.Graphical abstractFirst step of GPI anchor biosynthesis pathway in T.brucei BSF is catalysed by TbGPI3 complex.


2020 ◽  
Vol 295 (41) ◽  
pp. 14053-14064
Author(s):  
Ayodele Akintayo ◽  
Joshua Mayoral ◽  
Masahiro Asada ◽  
Jian Tang ◽  
Subha Sundaram ◽  
...  

The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 amino acids (aa) from the C terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full-length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immuno-precipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25-aa C terminus of MGAT4D-L to the C terminus of MGAT1. Mutation of each amino acid in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu-395 or Phe-396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.


2021 ◽  
Vol 22 (11) ◽  
pp. 5870
Author(s):  
Yasaman Pakdaman ◽  
Siren Berland ◽  
Helene J. Bustad ◽  
Sigrid Erdal ◽  
Bryony A. Thompson ◽  
...  

Variants in STUB1 cause both autosomal recessive (SCAR16) and dominant (SCA48) spinocerebellar ataxia. Reports from 18 STUB1 variants causing SCA48 show that the clinical picture includes later-onset ataxia with a cerebellar cognitive affective syndrome and varying clinical overlap with SCAR16. However, little is known about the molecular properties of dominant STUB1 variants. Here, we describe three SCA48 families with novel, dominantly inherited STUB1 variants (p.Arg51_Ile53delinsProAla, p.Lys143_Trp147del, and p.Gly249Val). All the patients developed symptoms from 30 years of age or later, all had cerebellar atrophy, and 4 had cognitive/psychiatric phenotypes. Investigation of the structural and functional consequences of the recombinant C-terminus of HSC70-interacting protein (CHIP) variants was performed in vitro using ubiquitin ligase activity assay, circular dichroism assay and native polyacrylamide gel electrophoresis. These studies revealed that dominantly and recessively inherited STUB1 variants showed similar biochemical defects, including impaired ubiquitin ligase activity and altered oligomerization properties of the CHIP. Our findings expand the molecular understanding of SCA48 but also mean that assumptions concerning unaffected carriers of recessive STUB1 variants in SCAR16 families must be re-evaluated. More investigations are needed to verify the disease status of SCAR16 heterozygotes and elucidate the molecular relationship between SCA48 and SCAR16 diseases.


2020 ◽  
Vol 27 (3) ◽  
pp. 225-235
Author(s):  
Ambika Sharma ◽  
Rajesh Nigam ◽  
Ashish Kumar ◽  
Simmi Singh

Background:: Urine is considered one of the biological fluids in which antimicrobial peptides are secreted or expressed. Cow urine has not been investigated for the presence of these peptides using MALDI-TOF-MS. Objective:: The aim of this study is to isolate, identify and assess the antimicrobial activity of urinary antimicrobial peptides from healthy normal cycling cows. Method:: We analyzed the urine sample using diafiltration, ion exchange chromatography, Reverse Phase High-Performance Liquid Chromatography (RP-HPLC), acid urea polyacrylamide gel electrophoresis (AU-PAGE) coupled with identification through Peptide Mass Fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDITOF- MS). The in vitro antimicrobial effects of purified fractions were assessed using Radial Diffusion Assay (RDA) and microtitre broth dilution assay against Gram-positive and Gramnegative bacteria. Results: : Proteins corresponding to the peaks were identified using SWISSPROT protein database. This study revealed constitutive expression of β-Defensin-1 (DEFB1), β-Defensin-4A (DFB4A), Neutrophil Defensin-1 (DEF1), Neutrophil Defensin-3 (DEF3) in cow urine. The identified peptides are cationic antimicrobial peptides of the defensin family. The purified fractions exhibited antimicrobial effects in radial diffusion assay and MIC values in the range of 2.93-29.3 &*#181;M/L. Conclusion:: This study concludes that cow urine, previously unexplored with regard to antimicrobial peptides, would be a promising source of highly potent AMPs and an effective alternative to the resistant antibiotics.


2019 ◽  
Vol 17 ◽  
Author(s):  
Xiaoli Yu ◽  
Lu Zhang ◽  
Na Li ◽  
Peng Hu ◽  
Zhaoqin Zhu ◽  
...  

Aim: We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary tuberculosis. Background: Tuberculosis is an ancient infectious disease that remains one of the major global health problems. Until now, effective, convenient, and affordable methods for diagnosis of Pulmonary tuberculosis were still lacked. Objective: This study focused on construct a label-free LC-MS/MS based comparative proteomics between six tuberculosis patients and six healthy controls to identify differentially expressed proteins (DEPs) in plasma. Method: To reduce the influences of high-abundant proteins, albumin and globulin were removed from plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host markers were investigated by general discriminant analysis (GDA), with leave-one-out cross-validation. Results: A total of 572 proteins were identified and 549 proteins were quantified. The threshold for differentially expressed protein was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis, TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D, DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation, were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly classified and original grouped cases correctly classified is greater than or equal to 91.7%. Conclusion: We successfully identified five candidate biomarkers for immunodiagnosis of PTB in plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins as potential biomarkers for pulmonary tuberculosis, and be worthy of further validation.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3317
Author(s):  
Eric Moeglin ◽  
Dominique Desplancq ◽  
Audrey Stoessel ◽  
Christian Massute ◽  
Jeremy Ranniger ◽  
...  

Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.


2019 ◽  
Vol 24 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Raimo Franke ◽  
Bettina Hinkelmann ◽  
Verena Fetz ◽  
Theresia Stradal ◽  
Florenz Sasse ◽  
...  

Mode of action (MoA) identification of bioactive compounds is very often a challenging and time-consuming task. We used a label-free kinetic profiling method based on an impedance readout to monitor the time-dependent cellular response profiles for the interaction of bioactive natural products and other small molecules with mammalian cells. Such approaches have been rarely used so far due to the lack of data mining tools to properly capture the characteristics of the impedance curves. We developed a data analysis pipeline for the xCELLigence Real-Time Cell Analysis detection platform to process the data, assess and score their reproducibility, and provide rank-based MoA predictions for a reference set of 60 bioactive compounds. The method can reveal additional, previously unknown targets, as exemplified by the identification of tubulin-destabilizing activities of the RNA synthesis inhibitor actinomycin D and the effects on DNA replication of vioprolide A. The data analysis pipeline is based on the statistical programming language R and is available to the scientific community through a GitHub repository.


Author(s):  
Kendall Martin ◽  
Tong Zhang ◽  
Tai-Tu Lin ◽  
Amber N. Habowski ◽  
Rui Zhao ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Olga Ilinskaya ◽  
Vera Ulyanova ◽  
Irina Lisevich ◽  
Elena Dudkina ◽  
Nataliya Zakharchenko ◽  
...  

Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.


Sign in / Sign up

Export Citation Format

Share Document