scholarly journals Molecular detection of Coxiella burnetii infection in aborted samples of domestic ruminants in Iran

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250116
Author(s):  
Ashraf Mohabati Mobarez ◽  
Mohammad Khalili ◽  
Ehsan Mostafavi ◽  
Saber Esmaeili

Background Coxiella burnetii is the causative agent of Q fever which is a highly infectious zoonotic disease. C. burnetii has become one of the most important causes of abortion in livestock, which can lead to widespread abortions in these animals. There are very limited studies on the prevalence of C. burnetii infection in cases of animal abortion in Iran. The aim of this study was to investigate the occurrence of C. burnetii in ruminant abortion samples in Iran. Methods Abortion samples from cattle, sheep and goats were collected from different parts of Iran and were tested using Real-time PCR targeting the IS1111 element of C. burnetii. Results In this study, 36 samples (24.7%) of the 146 collected samples were positive for C. burnetii. The prevalence of C. burnetii was 21.3% (20 of 94 samples) in sheep samples. Also, 10 of 46 cattle samples (21.7%) were positive. All six goat abortion samples were positive for C. burnetii. Conclusions The findings of the study demonstrate that C. burnetii plays an important role in domestic ruminant abortions in Iran, suggesting that more attention should be paid to the role of C. burnetii in domestic animal abortions by veterinary organizations. The risk of transmitting the infection to humans due to abortion of animals should also be considered.

Author(s):  
Natalí Uribe Pulido ◽  
Clara Escorcia García ◽  
Ruth Cabrera Orrego ◽  
Lina Andrea Gutiérrez ◽  
Carlos Andrés Agudelo

Abstract We herein described a case of acute infection by Coxiella burnetii (acute Q fever) that started with a short incubation period and showed prominent dermatological manifestations and unusual serological behavior. The infection was confirmed by molecular detection through real-time PCR using genomic DNA collected from peripheral blood.


2020 ◽  
Vol 8 (8) ◽  
pp. 1235 ◽  
Author(s):  
Mareike Stellfeld ◽  
Claudia Gerlach ◽  
Ina-Gabriele Richter ◽  
Peter Miethe ◽  
Dominika Fahlbusch ◽  
...  

Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.


1994 ◽  
Vol 5 (3) ◽  
pp. 113-118 ◽  
Author(s):  
Monique Goyette ◽  
André Poirier ◽  
Jean Bouchard ◽  
Eric Morrier

Q fever, a zoonosis acquired by inhalation of the rickettsiaCoxiella burnetii, is rarely diagnosed in Canada. The world incidence has been increasing since 1960, because of progressive dissemination of this microorganism in animal populations, particularly domestic ruminants. Some recent outbreaks were caused by cats. Of 14 cases reported in Quebec between 1989 and the beginning of 1993, nine occurred successively in an 18-month period in the rural region surrounding Trois-Rivières, after contact with livestock or cats. These cases are reported here, with the results of serological screening of the workers of an abattoir where one of the cases worked. Five additional cases reported in Quebec during the same period are briefly reviewed.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180237 ◽  
Author(s):  
Young-Rock Jang ◽  
Yong Shin ◽  
Choong Eun Jin ◽  
Bonhan Koo ◽  
Se Yoon Park ◽  
...  

QJM ◽  
2005 ◽  
Vol 98 (8) ◽  
pp. 615-620 ◽  
Author(s):  
J.-M. Rolain ◽  
D. Raoult

2021 ◽  
Author(s):  
Thomas Clune ◽  
Amy Lockwood ◽  
Serina Hancock ◽  
Andrew N. Thompson ◽  
Mieghan Bruce ◽  
...  

Abstract Coxiella burnetii can cause reproductive disease in sheep and zoonotic Q-fever infections in humans. The role of infectious diseases including coxiellosis in causing poorer reproductive performance of primiparous ewes is not well studied. The aim of this study was to determine if natural exposure to C. burnetii is associated with poor reproductive performance of primiparous ewes and compare seroprevalence of primiparous and multiparous ewes. Coxiella burnetii seroprevalence was 0.08% (95% confidence interval 0.01, 0.36) in primiparous ewes and 0.36% (0.07, 1.14) in mature ewes. Coxiella burnetii was not detected in tissue samples from aborted or stillborn lambs using molecular diagnostic tests (qPCR). These findings suggest that C. burnetii infection was unlikely to be an important contributor to abortion and perinatal mortalities observed for primiparous ewes, and exposure to C. burnetii was not widespread in ewes on farms located over wide geographical region of southern Australia.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ashraf Mohabati Mobarez ◽  
Ehsan Mostafavi ◽  
Mohammad Khalili ◽  
Saber Esmaeili

Coxiella burnetii is the causative agent of Q fever in humans and animals. This study aimed to determine the frequency of C. burnetii in milk samples of dairy animals (goats, sheep, and cattle) in some selected regions in Iran, where there is no information about prevalence of C. burnetii. In this study, 162 individual milk samples were collected from 43 farms in three provinces (Tehran, Hamadan, and Mazandaran). Real-time PCR was used for the detection of IS1111a element of C. burnetii. In total, 23 of 162 samples (14.2%, 95% confidence interval (CI): 9.65–20.2%) were positive for C. burnetii by real-time PCR. C. burnetii was detected in 10.17% (95% CI: 4.74–20.46) of goat milk samples. In sheep milk samples, 18.6% (95% CI: 9.74–32.62) were positive, and C. burnetii was detected in 15% (95% CI: 8.1–26.11) of cattle milk samples. Molecular evidence of the presence of C. burnetii was seen in milk samples of dairy animals in all the studied regions. These findings demonstrated that C. burnetii infection, especially in raw milk samples, deserves more attention from the health care system and veterinary organization in Iran.


2020 ◽  
Vol 71 (3) ◽  
pp. 2383
Author(s):  
S. HIRECHE ◽  
A. AGABOU ◽  
Ο. BOUAZIZ

Q fever is a zoonotic disease caused by the rickettsia-like Coxiella burnetii and leads to abortions and decreased reproductive performances in domestic ruminants. A serological survey, using ELISA test, was conducted to assess the prevalence of this infection in 226 ewes belonging to 39 flocks localized in Constantine (North-eastern Algeria). A pretested questionnaire has been submitted to farmers/shepherds to collect information related to relevant risk factors. Results revealed the presence of C. burnetii antibodies in 12.4% (95% CI: 8.08%−16.72%) of individual animals while 35.9% (95% CI: 21.20%−52.82%) of sampled flocks accounted at least one seropositive ewe. Significant causative associations were observed for origin of animals (χ2=14.29, P=0.001), vaccination against enterotoxaemia (χ2=12.12, P=0.002) and pox (χ2=5.30, P=0.025), access to the farm by foreign visitors (χ2=10.87, P=0.004), farmers/shepherds’ visits to other farms (χ2=6.31, P=0.021), disinfection frequency (χ2=7.98, P=0.046), pest infestation within farms (χ2=9.55, P=0.049) and abortion history (χ2=5.54, P=0.029). This recorded prevalence of Coxiella infection would indicate a possible responsibility of this agent in causing abortion and reproductive failures in the tested flocks. Implementing active surveillance programs and further investigations using more accurate analyses and including large samples of more animal species from several provinces are needed to eluci date the real occurrence and dynamics of this infection in the national livestock.


Author(s):  
Sara Tomaiuolo ◽  
Samira Boarbi ◽  
Tiziano Fancello ◽  
Patrick Michel ◽  
Damien Desqueper ◽  
...  

Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii. Domestic ruminants are the primary source for human infection, and the identification of likely contamination routes from the reservoir animals the critical point to implement control programs. This study shows that Q fever is detected in Belgium in abortion of cattle, goat and sheep at a different degree of apparent prevalence (1.93%, 9.19%, and 5.50%, respectively). In addition, and for the first time, it is detected in abortion of alpaca (Vicugna pacos), raising questions on the role of these animals as reservoirs. To determine the relationship between animal and human strains, Multiple Locus Variable-number Tandem Repeat Analysis (MLVA) (n=146), Single-Nucleotide Polymorphism (SNP) (n=92) and Whole Genome Sequencing (WGS) (n=4) methods were used to characterize samples/strains during 2009-2019. Three MLVA clusters (A, B, C) subdivided in 23 subclusters (A1-A12, B1-B8, C1-C3) and 3 SNP types (SNP1, SNP2, SNP6) were identified. The SNP2 type/MLVA cluster A was the most abundant and dispersed genotype over the entire territory, but it seemed not responsible for human cases, as it was only present in animal samples. The SNP1/MLVA B and SNP6/MLVA C clusters were mostly found in small ruminant and human samples, with the rare possibility of spillovers in cattle. SNP1/MLVA B cluster was present in all Belgian areas, while the SNP6/MLVA C cluster appeared more concentrated in the Western provinces. A broad analysis of European MLVA profiles confirmed the host-species distribution described for Belgian samples. In silico genotyping (WGS) further identified the spacer types and the genomic groups of C. burnetii Belgian strains: cattle and goat SNP2/MLVA A isolates belonged to ST61 and genomic group III, while the goat SNP1/MLVA B strain was classified as ST33 and genomic group II. In conclusion, Q fever is widespread in all Belgian domestic ruminants and in alpaca. We determined that the public health risk in Belgium is likely linked to specific genomic groups (SNP1/MLVA B and SNP6/MLVA C) mostly found in small ruminant strains. Considering the concordance between Belgian and European results, these considerations could be extended to other European countries.


Biologia ◽  
2021 ◽  
Author(s):  
Monika Drážovská ◽  
Marián Prokeš ◽  
Boris Vojtek ◽  
Jana Mojžišová ◽  
Anna Ondrejková ◽  
...  

AbstractCoxiella burnetii is a worldwide zoonotic pathogen causing Q fever in various animal species and humans. In Slovakia, cases of C. burnetii infection in both animals and humans are confirmed every year. The role of horses in the epidemiology of this neglected disease is still unclear. In our study, we focused on a serosurvey of C. burnetii in the equine population in Slovakia by the ELISA method. Subsequently, a nested PCR was performed to detect the 16S rRNA fragment of the genus Coxiella. Among 184 horse sera, the presence of specific antibodies to C. burnetii was detected in four samples, representing a 2.17% seropositivity. All the positive horses were mares; two originated from Central Slovakia and two from Eastern Slovakia. Although the number of positive samples was too small for a determination of statistical significance, our results provide the first confirmation of antibodies to C. burnetii in horses from Slovakia. Although no positive PCR result was obtained, these serological findings may help to clarify the circulation of the pathogen in the environment.


Sign in / Sign up

Export Citation Format

Share Document