scholarly journals Particle jet impact deep-rock in rotary drilling: Failure process and lab experiment

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250588
Author(s):  
Tiancheng Fang ◽  
Fushen Ren ◽  
Baojin Wang ◽  
Jianxun Cheng ◽  
Hanxu Liu

Aimed at the technical problems of low drilling speed and difficult rock-breaking in deep-well and hard rock-stratum, particle waterjet coupled impact rock-breaking technology in rotary drilling is put forward in this paper. Firstly, the working principle of particle jet impact rock-breaking in rotary drilling was introduced, and the acceleration model of particle jet and the damage model of rock were established. The acceleration mechanism of particles and dynamic damage evolution process of rock under particle jet were studied, which showed that the broken pit and rock damage would increase with time gone on, and damage evolution of rock presented the radial expansion. Then, experimental device of particle jet coupled impact rock-breaking in rotary state was developed, and the effect of jet parameters on penetration depth and failure volume was analyzed with comparison of la experiment and numerical simulation. The results showed that drilling speed with particle jet impact is twice that of conventional drilling, and combination nozzles layout of impact angle with 8°and 20° can achieve rock-drilled rapidly, which also demonstrated the correctness of simulation method. The device development and the rock-breaking results analysis would be of great value for engineering application.

2015 ◽  
Vol 723 ◽  
pp. 21-25
Author(s):  
Chao Fan Zhao ◽  
Zhao Xia Li

To study the failure process of metal structure with meso-defects, RVE (representative volume element) with various initial meso-defects were analyzed by using ABAQUS software, the parameter f (void volume fraction) of GTN damage model was regarded as the criterion of structural damage. The result shows that f increased more obvious with volume of defects for spherical defects with the same shape but different size. When the radius of defects is less than 0.15mm, the influence of defects’ volume on increases of f is clear enough. When the radius is greater than 0.15mm, the effects is diminishing. For ellipsoidal defects with the same volume but different aspect ratio, when the long axis perpendicular to the direction of load, the increased trend of f according to plastic deformation more obvious along with aspect ratio of defects. Apparently, as aspect ratio approaches infinity, f would have the fastest growth. Consequently, the bigger defect volume and aspect ratio, the more conducive for damage evolution of the metal structure.


Author(s):  
Tiancheng Fang ◽  
Fushen Ren ◽  
Hanxu Liu ◽  
Yuan Zhang ◽  
Jianxun Cheng

AbstractIncreasing drilling speed and efficiency of hard formation for deep and ultra-deep well is one of the international recognized drilling problems and key technologies to be tackled urgently. Particle jet impact drilling technology is an efficient non-contact rock-breaking method to overcome slow drilling speed, which has great development and application potential in drilling speed-increase of hard formation and deep well. High efficiency drilling technology and rock-breaking speed-increase mechanism in high temperature, high pressure and high hardness formations of deep and ultra-deep wells were mainly focused and keynoted in this paper. With extensive investigation of domestic and foreign literature, the working principle, key technical devices, deep-well-rock mechanical characteristic, unconventional constitutive model and rock-breaking mechanism of particle jet impact drilling technology were analyzed, which proved the feasibility and high efficiency for deep and hard stratum, and also, dynamic failure mechanism of rock needs to be elaborated by constructing the constitutive model with high temperature and pressure. Meanwhile, the major problems to be solved at present and development direction future were summarized, which mainly included: miniaturization of drilling equipment and individualization of drilling bit; optimization of jet parameters and the evaluation method of rock-breaking effect; establishment of mechanical property and unconventional constitutive model of deep-well-rock; rock-breaking mechanism and dynamic response under particle jet coupling impact. The research can help for better understanding of deep-well drilling speed-increasing technology and also promote the development and engineering application of particle jet impact drilling speed-increase theory and equipment.


2006 ◽  
Vol 324-325 ◽  
pp. 579-582
Author(s):  
Jun Feng Zhang ◽  
Tao Qi

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.


Author(s):  
C L Chow ◽  
X F Chen

A three-dimensional ductile damage model based on the endochronic plastic theory is developed and employed to characterize the failure process of double-edge notched thick-tension specimens. A ductile damage evolution equation is derived with a new intrinsic time-scale specifically defined to characterize damage evolution. Two damage failure criteria are proposed and employed to predict the failure loads and crack initiation sites which correspond well with those measured experimentally.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Jelena Živković ◽  
Vladimir Dunić ◽  
Vladimir Milovanović ◽  
Ana Pavlović ◽  
Miroslav Živković

Steel structures are designed to operate in an elastic domain, but sometimes plastic strains induce damage and fracture. Besides experimental investigation, a phase-field damage model (PFDM) emerged as a cutting-edge simulation technique for predicting damage evolution. In this paper, a von Mises metal plasticity model is modified and a coupling with PFDM is improved to simulate ductile behavior of metallic materials with or without constant stress plateau after yielding occurs. The proposed improvements are: (1) new coupling variable activated after the critical equivalent plastic strain is reached; (2) two-stage yield function consisting of perfect plasticity and extended Simo-type hardening functions. The uniaxial tension tests are conducted for verification purposes and identifying the material parameters. The staggered iterative scheme, multiplicative decomposition of the deformation gradient, and logarithmic natural strain measure are employed for the implementation into finite element method (FEM) software. The coupling is verified by the ‘one element’ example. The excellent qualitative and quantitative overlapping of the force-displacement response of experimental and simulation results is recorded. The practical significances of the proposed PFDM are a better insight into the simulation of damage evolution in steel structures, and an easy extension of existing the von Mises plasticity model coupled to damage phase-field.


2020 ◽  
Vol 29 (7) ◽  
pp. 1117-1137 ◽  
Author(s):  
Wenlin Feng ◽  
Chunsheng Qiao ◽  
Shuangjian Niu ◽  
Zhao Yang ◽  
Tan Wang

The experimental results show that the creep properties of the rocks are affected by the initial damage, and the damage evolution also has a significant impact on the time-dependent properties of the rocks during the creep. However, the effects of the initial damage and the damage evolution are seldom considered in the current study of the rocks' creep models. In this paper, a new nonlinear creep damage model is proposed based on the multistage creep test results of the sandstones with different damage degrees. The new nonlinear creep damage model is improved based on the Nishihara model. The influences of the initial damage and the damage evolution on the components in the Nishihara model are considered. The creep damage model can not only describe the changes in three creep stages, namely, the primary creep, the secondary creep, and the tertiary creep, but also reflect the influence of the initial damage and the damage evolution on creep failure. The nonlinear least squares method is used to determine the parameters in the nonlinear creep damage model. The consistency between the experimental data and the predicted results indicates the applicability of the nonlinear damage model to accurately predict the creep deformation of the rocks with initial damage.


2021 ◽  
pp. 105678952110014
Author(s):  
Jichang Wang ◽  
Xiaoming Guo ◽  
Nailong Zhang

In this research, experiments and numerical simulations are employed to research the failure process of concrete. Fracture experiments on three-point bending (TPB) concrete beams with a prefabricated edge notch at the middle of the beam bottom are performed using a modified rigid testing instrument. The characteristics of the crack and section are analyzed, including the crack tensile opening displacement, crack length and width, and crack faces characteristics. Also, the full curves of the force-crack tensile opening displacement (CMOD) and force-deflection of the TPB beams with the prefabricated edge notch after breakage are obtained. The phase field (PF) damage model is applied to the mixed-mode and mode-I failure processes of concrete structures through the ABAQUS subroutine user defined element (UEL). The crack path and the full curves of force-CMOD and force-deflection obtained by numerical calculations are consistent with the experimental results and the calculated results of other researchers. The influences of the mesh sizes, initial lengths, and notched depths on the TPB beam of concrete are also analyzed.


2001 ◽  
Author(s):  
G. P. Tandon ◽  
R. Y. Kim

Abstract A study is conducted to examine and predict the micromechanical failure modes in a unidirectional composite when subjected to tensile loading parallel to the fibers. Experimental observations are made at some selected stress levels to identify the initiation and growth of micro damage during loading. The axisymmetric damage model of a concentric cylinder is then utilized to postulate and analyze some failure scenarios.


Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


2011 ◽  
Vol 70 ◽  
pp. 87-92 ◽  
Author(s):  
Shao Peng Ma ◽  
Dong Yan ◽  
Xian Wang ◽  
Yan Yan Cao

Observation of damage evolution is of great importance to the understanding of the failure process of rock materials. High-speed DIC system is constructed and used to observe the strain field evolution of the granodiorite disc in Brazilian test. The strain fields at different load levels are analyzed based on the stain abnormality indicator (SAI) which is the ratio of the strain measured in experiment to the strain from theoretical solution in an isotropy and elastic model. SAI could be used to indicate the damage in the specimen. The process of damage and failure of the specimen in Brazilian disc test is quantitatively analyzed and deeply discussed according to the strain fields and the statistics of SAI. Experimental results in this paper show that the failure process of the disc specimen in Brazilian test is not simple crack propagation under tensile load, but a complicated damage evolution procedure.


Sign in / Sign up

Export Citation Format

Share Document