scholarly journals Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251922
Author(s):  
Bruce D. Kohorn ◽  
Bridgid E. Greed ◽  
Gregory Mouille ◽  
Stéphane Verger ◽  
Susan L. Kohorn

Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).

2008 ◽  
Vol 74 (6) ◽  
pp. 1798-1804 ◽  
Author(s):  
Henriette Geier ◽  
Serge Mostowy ◽  
Gerard A. Cangelosi ◽  
Marcel A. Behr ◽  
Timothy E. Ford

ABSTRACT Mycobacterium avium is an environmental organism and opportunistic pathogen with inherent resistance to drugs, environmental stresses, and the host immune response. To adapt to these disparate conditions, M. avium must control its transcriptional response to environmental cues. M. avium forms biofilms in various environmental settings, including drinking water pipes and potable water reservoirs. In this study, we investigated the role of the universal signaling molecule autoinducer-2 (AI-2) in biofilm formation by M. avium. The addition of the compound to planktonic M. avium cultures resulted in increased biofilm formation. Microarray and reverse transcriptase PCR studies revealed an upregulation of the oxidative stress response upon addition of AI-2. This suggests that the response to AI-2 might be related to oxidative stress, rather than quorum sensing. Consistent with this model, addition of hydrogen peroxide, a known stimulus of the oxidative stress response, to M. avium cultures resulted in elevated biofilm formation. These results suggest that AI-2 does not act as a quorum-sensing signal in M. avium. Instead, biofilm formation is triggered by environmental stresses of biotic and abiotic origins and AI-2 may exert effects on that level.


2021 ◽  
Author(s):  
Nikki D. Russell ◽  
Clement Y. Chow

AbstractGenotype x Environment (GxE) interactions occur when environmental conditions drastically change the effect of a genetic variant. In order to truly understand the effect of genetic variation, we need to incorporate multiple environments into our analyses. Many variants, under steady state conditions, may be silent or even have the opposite effect under stress conditions. This study uses an in vivo mouse model to investigate how the effect of genetic variation changes with tissue type and cellular stress. Endoplasmic reticulum (ER) stress occurs when misfolded proteins accumulate in the ER. This triggers the unfolded protein response (UPR), a large transcriptional response which attempts to return the cell to homeostasis. This transcriptional response, despite being a well conserved, basic cellular process, is highly variable across different genetic backgrounds, making it an ideal system to study GxE effects. In this study, we sought to better understand how genetic variation alters expression across tissues, in the presence and absence of ER stress. The use of different mouse strains and their F1s allow us to also identify context specific cis- and trans-regulatory mechanisms underlying variable transcriptional responses. We found hundreds of genes that respond to ER stress in a tissue- and/or genotype-dependent manner. Genotype-dependent ER stress-responsive genes are enriched for processes such as protein folding, apoptosis, and protein transport, indicating that some of the variability occurs in canonical ER stress factors. The majority of regulatory mechanisms underlying these variable transcriptional responses derive from cis-regulatory variation and are unique to a given tissue or ER stress state. This study demonstrates the need for incorporating multiple environments in future studies to better elucidate the effect of any particular genetic factor in basic biological pathways, like the ER stress response.Author SummaryThe effect of genetic variation is dependent on environmental context. Here we use genetically diverse mouse strains to understand how genetic variation interacts with stress state to produce variable transcriptional profiles. In this study, we take advantage of the endoplasmic reticulum (ER) stress response which is a large transcriptional response to misfolded proteins. Using this system, we uncovered tissue- and ER stress-specific effects of genetic variation on gene expression. Genes with genotype-dependent variable expression levels in response to ER stress were enriched for canonical ER stress functions, such as protein folding and transport. These variable effects of genetic variation are driven by unique sets of regulatory variation that are only active under context-specific circumstances. The results of this study highlight the importance of including multiple environments and genetic backgrounds when studying the ER stress response and other cellular pathways.


2019 ◽  
Vol 217 (3) ◽  
Author(s):  
Sayaka Shibata ◽  
Mariko Kashiwagi ◽  
Bruce A. Morgan ◽  
Katia Georgopoulos

Keratinocytes respond to environmental signals by eliciting induction of genes that preserve skin’s integrity. Here we show that the transcriptional response to stress signaling is supported by short-lived epigenetic changes. Comparison of chromatin accessibility and transcriptional changes induced by barrier disruption or by loss of the nucleosome remodeler Mi-2β identified their striking convergence in mouse and human keratinocytes. Mi-2β directly repressed genes induced by barrier disruption by restricting AP1-enriched promoter-distal sites, occupied by Mi-2β and JUNB at steady state and by c-JUN after Mi-2β depletion or stress signaling. Barrier disruption led to a modest reduction in Mi-2β expression and a further selective reduction of Mi-2β localization at stress response genes, possibly through competition with activated c-JUN. Consistent with a repressive role at stress response genes, genetic ablation of Mi-2β did not prevent reestablishment of barrier integrity but was required for return to homeostasis. Thus, a competition between Mi-2β–repressive and activating AP1 complexes may permit rapid transcriptional response to and resolution from stress signaling.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Vittoria Cenni ◽  
Snezana Kojic ◽  
Cristina Capanni ◽  
Georgine Faulkner ◽  
Giovanna Lattanzi

Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2478
Author(s):  
Xingwen Wu ◽  
Antony Bacic ◽  
Kim L. Johnson ◽  
John Humphries

The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall—plasma membrane—cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.


2007 ◽  
Vol 35 (5) ◽  
pp. 1049-1051 ◽  
Author(s):  
W. Thomas ◽  
V. McEneaney ◽  
B.J. Harvey

Aldosterone plays an important role in the regulation of blood pressure. The effects of this hormone have classically been described in terms of the transcriptional regulation of genes that facilitate electrolyte transport, particularly across high-resistance epithelia. The protein kinase signalling cascades that are rapidly activated in response to aldosterone are emerging as important modulators of the transcriptional response, and may serve to prime cells for the subsequent transcriptional changes. The activation of protein kinase D through an epidermal growth factor receptor transactivation pathway by aldosterone in renal cells has the potential to impact on cell trafficking events that regulate transporter activity.


Sign in / Sign up

Export Citation Format

Share Document