scholarly journals Vulnerability of Pacific salmon to invasion of northern pike (Esox lucius) in Southcentral Alaska

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254097
Author(s):  
Chase S. Jalbert ◽  
Jeffrey A. Falke ◽  
J. Andrés López ◽  
Kristine J. Dunker ◽  
Adam J. Sepulveda ◽  
...  

The relentless role of invasive species in the extinction of native biota requires predictions of ecosystem vulnerability to inform proactive management strategies. The worldwide invasion and range expansion of predatory northern pike (Esox lucius) has been linked to the decline of native fishes and tools are needed to predict the vulnerability of habitats to invasion over broad geographic scales. To address this need, we coupled an intrinsic potential habitat modelling approach with a Bayesian network to evaluate the vulnerability of five culturally and economically vital species of Pacific salmon (Oncorhynchus spp.) to invasion by northern pike. This study was conducted along 22,875 stream km in the Southcentral region of Alaska, USA. Pink salmon (O. gorbuscha) were the most vulnerable species, with 15.2% (2,458 km) of their calculated extent identified as “highly” vulnerable, followed closely by chum salmon (O. keta, 14.8%; 2,557 km) and coho salmon (O. kisutch, 14.7%; 2,536 km). Moreover, all five Pacific salmon species were highly vulnerable in 1,001 stream km of shared habitat. This simple to implement, adaptable, and cost-effective framework will allow prioritizing habitats for early detection and monitoring of invading northern pike.

Trudy VNIRO ◽  
2020 ◽  
Vol 179 ◽  
pp. 90-102
Author(s):  
M. N. Gorokhov ◽  
V. V. Volobuev ◽  
I. S. Golovanov

There are two main areas of pacific salmon fishing in the Magadan region: Shelikhova Gulf and Tauiskaya Bay. The main fishing species is pink salmon in the region. Its share of total salmon catch by odd-year returns reaches 85 %. Data on the dynamics of escapement to the spawning grounds of pink salmon of the Shelikhova Gulf and Tauiskaya Bay are presented. The displacement of the level of spawning returns of pink salmon into the Shelihova Gulf with the simultaneous reduction of its returns to the Tauiskaya Bay is shown. Data on the dynamics of the fishing indicators of pink salmon for the two main fishing areas are provided. The Tauiskaya Bay as the main pink salmon fishery area loses its importance is shown. Graphical data on the escapement of producers pink salmon to the spawning grounds are presented and the optimal values of spawning escapements are estimated. Chum salmon is the second largest and most fishing species. Information on the dynamics of the number of returns, catch and escapement to the spawning grounds of chum salmon is given. The indicators of escapement to the spawning areas and their compliance with the optimal passes of salmon producers are analyzed. The issues of the dynamics of returns number, catch and the escapement to the spawning grounds of coho salmon producers are considered. The level of the escapement to the spawning areas is shown and the ratio of actual to optimal values of passes is estimated. The role of coho salmon as an object of industrial fishing and amateur fishing is shown. The extent of fishing press on individual groups of salmon populations is discussed. It is concluded that it is necessary to remove the main salmon fishery from the Tauiskaya Bay to the Shelikhova Gulf.


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


<em>Abstract</em>.-Pacific salmon <em>Oncorhynchus </em>spp. catches are at historic high levels. It is significant that one of the world's major fisheries for a group of species that dominates the surface waters of the subarctic Pacific is actually very healthy. Natural trends in climate are now recognized to cause large fluctuations in Pacific salmon production, as shown in historical records of catch and recent changes probably have been affected by greenhouse gas induced climate changes. Pink salmon <em>O. gorbuscha </em>and chum salmon <em>O. keta </em>production and catch has increased in the past 30 years and may continue in a similar trend for for the next few decades. Coho salmon <em>O. kisutch </em>and Chinook salmon <em>O. tshawytscha </em>catches have been declining for several decades, particularly at the southern end of their range, and they may continue to decline. In the 1970s, hatcheries were considered to be a method of adding to the wild production of coho and Chinook salmon because the ocean capacity to produce these species was assumed to be underutilized. Large-scale changes in Pacific salmon abundances are linked to changes in large-scale atmospheric processes. These large-scale atmospheric processes are also linked to planetary energy transfers, and there is a decadal scale pattern to these relationships. Pacific salmon production in general is higher in decades of intense Aleutian lows than in periods of weak Aleutian lows. Key to understanding the impact of climate change on Pacific salmon is understanding how the Aleutian low will change. Chinook and coho salmon are minor species in the total commercial catch, but important socially and economically in North America. A wise use of hatcheries may be needed to maintain abundances of these species in future decades.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


2015 ◽  
Vol 8 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Brenda S. Smith ◽  
Roger L. Sheley

Weed prevention is recognized as one of the most cost-effective management strategies for invasive plants. In the field of invasive plant management increasing emphasis is being directed toward proactive management. However, land managers are still somewhat reluctant to aggressively employ prevention programs. Part of this reluctance could be due to lack of understanding of what a comprehensive prevention program entails. The purpose of this paper is to improve strategic decision-making for site-specific prevention programs, such as those on ranches or in watersheds. Our interest is in advancing prevention planning for land managers—the people who are faced with the constant pressure of potential invasive species infestations on a day-to-day basis. To facilitate more widespread use of prevention programs we are proposing definitions for key terminology to standardize and facilitate communication about prevention programs. Additionally, we present a flow model with the steps necessary to successfully implement such programs. The model has three categories from which specific prevention planning occurs: (1) education, (2) early detection and eradication, and (3) interruption of movement. The flow model directs users through a series of interlinked steps. Finally, we provide a case study in which a ranch manager implemented a prevention program using this framework. By using this model, managers are poised to conduct more strategic planning. This model also has applications in outreach and education programs to assist land managers in prevention planning.


1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


1963 ◽  
Vol 41 (2) ◽  
pp. 307-319 ◽  
Author(s):  
Bertha Baggerman

Underyearling coho salmon treated with TSH showed a change from fresh- to saltwater preference, which was correlated with an increase in thyroid activity (as measured by the amount of radioiodine taken up by the gland and the conversion ratio).Under-yearling pink salmon treated with thiourea showed a change from salt-to freshwater preference, which was accompanied by a decrease in thyroid activity. In this species treatment with thiouracil and sodium thiocyanate also induced a change from salt- to freshwater preference.It is concluded that the secretory activity of the thyroid gland is intimately involved in the induction of changes in salinity preference, which, in their turn, are closely associated with the onset and end of the migration season.


2008 ◽  
Vol 65 (2) ◽  
pp. 212-226 ◽  
Author(s):  
Kendra R Holt ◽  
Sean P Cox

Canada’s Wild Salmon Policy requires that biological status of conservation units of Pacific salmon (Oncorhynchus spp.) be assessed regularly in relation to abundance-based benchmarks. Visual survey methods, in which periodic counts of spawning fish are made throughout a season, will likely be used for this purpose because they provide a cost-effective means of monitoring interannual trends in escapement. Trend detection performance for visual survey methods depends mainly upon consistency in (i) the ability of observers to detect fish and (ii) the annual timing of fish presence in the survey area. We developed a Monte Carlo simulation procedure to evaluate the ability of four visual survey methods (peak count, mean count, trapezoidal area-under-the-curve (AUC), and likelihood AUC) to detect 30% declines in coho salmon (Oncorhynchus kisutch) escapement over 10 years (i.e., the magnitude of trend that would warrant listing a coho population as threatened using the listing criteria of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC)) given realistic levels of variability in these two factors. The mean count outperformed all other approaches across a wide range of scenarios about true population dynamics and survey designs, suggesting that a simple mean count method is suitable for monitoring coho escapements in relation to COSEWIC guidelines.


2020 ◽  
Vol 200 (2) ◽  
pp. 334-363
Author(s):  
G. V. Zaporozhets ◽  
O. M. Zaporozhets

State of pacific salmon stocks is considered for the basins of the Avacha and Paratunka Rivers in 1985–2019. Significant decline of the stocks is noted that is associated with anthropogenic impact growth. Total number of producers for five salmon species in the Paratunka is almost twice higher than in the Avacha, with the largest portion of pink salmon, then chum salmon, lower portion of coho salmon, and the smallest portions of sockeye and chinook salmons, which need special protection. The main biological parameters of salmons are analyzed for both rivers, as body length, weight, fecundity, sex ratio and age structure, by species. Relationships between the parameters are revealed; their long-term trends are determined. Abundance of wildly and artificially hatched chum salmon is compared.


1993 ◽  
Vol 50 (3) ◽  
pp. 586-590 ◽  
Author(s):  
Dennis W. Martens ◽  
James A. Servizi

Intracellular sediment particles were observed in the gills of underyearling coho salmon (Oncorhynchus kisutch) and pink salmon (O. gorbuscha) following laboratory exposure to Fraser River sediment. Gills of underyearling sockeye salmon (O. nerka), chinook salmon (O. tshawytscha), and coho exposed to a natural suspended sediment in Cultus Lake hatchery water also contained intracellular mineral particles. Mineral particles were seen in both epithelial and underlying gill filamental cells, and it is believed that these particles were phagocytosed by the former. Intracellular sediment particles were also observed in spleens of some sediment-exposed fish. Electron microscopy was used to measure gill particle sizes and X-ray diffraction analysis to identify eight minerals and one metal in the gills of sockeye previously exposed to suspended sediment.


Sign in / Sign up

Export Citation Format

Share Document