scholarly journals Differences in immune status and fecal SCFA between Indonesian stunted children and children with normal nutritional status

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254300
Author(s):  
Ingrid S. Surono ◽  
Fasli Jalal ◽  
Syukrini Bahri ◽  
Andreas Romulo ◽  
Pratiwi Dyah Kusumo ◽  
...  

We recently showed that the gut microbiota composition of stunted children was different from that of children with normal nutritional status. Here, we compared immune status and fecal microbial metabolite concentrations between stunted and normal children, and we correlated macronutrient intake (including energy), metabolites and immune status to microbiota composition. The results show that macronutrient intake was lower in stunted children for all components, but after correction for multiple comparison significant only for energy and fat. Only TGF-β was significantly different between stunted children and children of normal nutritional status after correction for multiple comparisons. TNF-alpha, IL-10, lipopolysaccharide binding protein in serum and secretory IgA in feces were not significantly different. Strikingly, all the individual short-chain and branched-chain fatty acids were higher in fecal samples of stunted children (significant for acetate, valerate and total SCFA). These metabolites correlated with a number of different microbial taxa, but due to extensive cross-feeding between microbes, did not show a specific pattern. However, the energy-loss due to higher excretion in stunted children of these metabolites, which can be used as substrate for the host, is striking. Several microbial taxa also correlated to the intake of macronutrients (including dietary fibre) and energy. Eisenbergiella positively correlated with all macronutrients, while an uncharacterized genus within the Succinivibrionaceae family negatively correlated with all macronutrients. These, and the other correlations observed, may provide indication on how to modulate the gut microbiota of stunted children such that their growth lag can be corrected. Trail registered at https://clinicaltrials.gov/ct2/show/NCT04698759.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245399
Author(s):  
Ingrid S. Surono ◽  
Dian Widiyanti ◽  
Pratiwi D. Kusumo ◽  
Koen Venema

The gut microbiota has been shown to play a role in energy metabolism of the host. Dysbiosis of the gut microbiota may predispose to obesity on the one hand, and stunting on the other. The aim of the study was to study the difference in gut microbiota composition of stunted Indonesian children and children of normal nutritional status between 3 and 5 years. Fecal samples and anthropometric measurements, in addition to economic and hygiene status were collected from 78 stunted children and 53 children with normal nutritional status in two regions in Banten and West Java provinces: Pandeglang and Sumedang, respectively. The gut microbiota composition was determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. The composition was correlated to nutritional status and anthropometric parameters. Macronutrient intake was on average lower in stunted children, while energy-loss in the form of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA) appeared to be higher in stunted children. In stunted children, at the phylum level the relative abundance of Bacteroidetes (44.4%) was significantly lower than in normal children (51.3%; p-value 2.55*10−4), while Firmicutes was significantly higher (45.7% vs. 39.8%; p-value 5.89*10−4). At the genus level, overall Prevotella 9 was the most abundant genus (average of 27%), and it was significantly lower in stunted children than in normal children (23.5% vs. 30.5%, respectively; q-value 0.059). Thirteen other genera were significantly different between stunted and normal children (q-value < 0.1), some of which were at low relative abundance and present in only a few children. Prevotella 9 positively correlated with height (in line with its higher relative abundance in normal children) and weight. In conclusion, Prevotella 9, which was the most abundant genus in the children, was significantly lower in stunted children. The abundance of Prevotella has been correlated with dietary fibre intake, which was lower in these stunted children. Since fibres are fermented by the gut microbiota into SCFA, and these SCFA are a source of energy for the host, increasing the proportion of Prevotella in stunted children may be of benefit. Whether this would prevent the occurrence of stunting or even has the potential to revert it, remains to be seen in follow up research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jason R. Catanzaro ◽  
Juliet D. Strauss ◽  
Agata Bielecka ◽  
Anthony F. Porto ◽  
Francis M. Lobo ◽  
...  

Abstract Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e65465 ◽  
Author(s):  
María Isabel Queipo-Ortuño ◽  
Luisa María Seoane ◽  
Mora Murri ◽  
María Pardo ◽  
Juan Miguel Gomez-Zumaquero ◽  
...  

MedPharmRes ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 22-24
Author(s):  
Binh Nguyen

It was previously thought that the establishment of the gut microbiota was completed within the first two years of life, and this community maintains fairly stable throughout the adult lifetime thereafter. However, recent evidence shows that the gut microbiota composition is constantly changing in the gut environment and is heavily influenced by diet. The individual differences responding to diets would root on the fluctuations of gut microbiota if dietary fluctuations affect the composition of gut microbiota so significantly.


2020 ◽  
Vol 21 (23) ◽  
pp. 9254
Author(s):  
Bernadeta Pietrzak ◽  
Katarzyna Tomela ◽  
Agnieszka Olejnik-Schmidt ◽  
Andrzej Mackiewicz ◽  
Marcin Schmidt

Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1125
Author(s):  
Van T. Pham ◽  
Marta Calatayud ◽  
Chloë Rotsaert ◽  
Nicole Seifert ◽  
Nathalie Richard ◽  
...  

Human gut microbiota (HGM) play a significant role in health and disease. Dietary components, including fiber, fat, proteins and micronutrients, can modulate HGM. Much research has been performed on conventional prebiotics such as fructooligosaccharides (FOS) and galactooligosaccharides (GOS), however, novel prebiotics or micronutrients still require further validation. We assessed the effect of FOS, xylooligosaccharides (XOS) and a mixture of an antioxidant vitamin blend (AOB) on gut microbiota composition and activity, and intestinal barrier in vitro. We used batch fermentations and tested the short-term effect of different products on microbial activity in six donors. Next, fecal inocula from two donors were used to inoculate the simulator of the human microbial ecosystem (SHIME) and after long-term exposure of FOS, XOS and AOB, microbial activity (short- and branched-chain fatty acids and lactate) and HGM composition were evaluated. Finally, in vitro assessment of intestinal barrier was performed in a Transwell setup of differentiated Caco-2 and HT29-MTX-E12 cells exposed to fermentation supernatants. Despite some donor-dependent differences, all three tested products showed beneficial modulatory effects on microbial activity represented by an increase in lactate and SCFA levels (acetate, butyrate and to a lesser extent also propionate), while decreasing proteolytic markers. Bifidogenic effect of XOS was consistent, while AOB supplementation appears to exert a specific impact on reducing F. nucleatum and increasing butyrate-producing B. wexlerae. Functional and compositional microbial changes were translated to an in vitro host response by increases of the intestinal barrier integrity by all the products and a decrease of the redox potential by AOB supplementation.


2018 ◽  
Author(s):  
Jason R Catanzaro ◽  
Juliet D Strauss ◽  
Agata Bielecka ◽  
Anthony F Porto ◽  
Francis M Lobo ◽  
...  

ABSTRACTImmunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) is the most common primary immunodeficiency in humans and is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and IgA or IgM coating of the gut microbiota in 15 sIgAd subjects and 15 matched controls. Although sIgAd subjects secreted a significant amount of IgM into the intestinal lumen, this was insufficient to fully compensate for the lack of secretory IgA. Indeed, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls, which was characterized by a trend towards decreased overall microbial diversity and significant shifts in the relative abundances of specific microbial taxa. While IgA targets a defined subset of the microbiota via high-level coating, compensatory IgM binds a broader subset of the microbiota in a less targeted manner. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community that promotes human health, enhances resistance to infection, and is resilient to perturbation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zubaidah Hasain ◽  
Raja Affendi Raja Ali ◽  
Shairah Abdul Razak ◽  
Kamalrul Azlan Azizan ◽  
Emad El-Omar ◽  
...  

Aberrant gut microbiota dysbiosis in women with a previous history of gestational diabetes mellitus (post-GDM) was comparable to that in adults with type 2 diabetes mellitus (T2DM). Nonetheless, potential relationships between diet, gut microbiota, and metabolic phenotypes in post-GDM women after delivery are yet to be discovered. In this research, we assessed the relationship of the macronutrient intakes, gut microbiota composition, and metabolic phenotypes (i.e., anthropometrics and glycemic control) in post-GDM women with and without postpartum glucose intolerance (GI). About 24 post-GDM women were included in this study, 14 women were grouped in the GI group and 10 women were grouped in the normal glucose tolerance (NGT) group according to oral glucose tolerance test. Macronutrient intake assessment using a 3-day dietary record, anthropometric measurements, biochemical analyses, and fecal sampling were done during 3–6 months postpartum. Gut microbiota profiling was determined using 16S rRNA genes sequencing targeting the V3–V4 regions. The relationships between macronutrient intakes, gut microbiota composition, and metabolic phenotypes were evaluated using Pearson’s correlation coefficient and stepwise regression analyses. In this study, most post-GDM women had significantly poor dietary fiber adherence than the nutritional recommendations. Women from the GI group have significantly higher fasting blood glucose (FBG), HbA1c, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) levels compared to the NGT group. The group also showed significant elevation of high-sensitivity C-reactive protein (hs-CRP) level when compared to the normal value. Specific gut microbial taxa derived from Proteobacteria and Bacteroidetes such as Parasutterella, Aquicella, Haliscomenobacter, and Prevotellaceae_NK3B31_group were significantly abundant in the GI group compared to the NGT group. Prevotellaceae_NK3B31_group was significantly associated with high FBG, HOMA-IR, and HbA1c levels. Low fiber and monounsaturated fatty acids intakes were associated with Lactobacillus. Meanwhile, Lactobacillus was associated with high body mass index, waist circumference, 2-h postprandial blood glucose, and hs-CRP levels. Our study suggested that macronutrient intake is an important predictor of gut microbiota dysbiosis and is associated with obesity, low-grade inflammation, and poor glycemic control in post-GDM women. Hence, dietary intake modification to remodel gut microbiota composition is a promising T2DM preventive strategy in post-GDM women.


Sign in / Sign up

Export Citation Format

Share Document