scholarly journals Glioblastoma signature in the DNA of blood-derived cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256831
Author(s):  
Siddharth Jain ◽  
Bijan Mazaheri ◽  
Netanel Raviv ◽  
Jehoshua Bruck

Current approach for the detection of cancer is based on identifying genetic mutations typical to tumor cells. This approach is effective only when cancer has already emerged, however, it might be in a stage too advanced for effective treatment. Cancer is caused by the continuous accumulation of mutations; is it possible to measure the time-dependent information of mutation accumulation and predict the emergence of cancer? We hypothesize that the mutation history derived from the tandem repeat regions in blood-derived DNA carries information about the accumulation of the cancer driver mutations in other tissues. To validate our hypothesis, we computed the mutation histories from the tandem repeat regions in blood-derived exomic DNA of 3874 TCGA patients with different cancer types and found a statistically significant signal with specificity ranging from 66% to 93% differentiating Glioblastoma patients from other cancer patients. Our approach and findings offer a new direction for future cancer prediction and early cancer detection based on information derived from blood-derived DNA.

2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


2017 ◽  
Vol 35 (18_suppl) ◽  
pp. LBA11516-LBA11516 ◽  
Author(s):  
Pedram Razavi ◽  
Bob T. Li ◽  
Wassim Abida ◽  
Alex Aravanis ◽  
Byoungsok Jung ◽  
...  

LBA11516 Background: ctDNA assays can noninvasively assess tumor burden and biology by identifying tumor-derived somatic alterations. For broad applicability, including early cancer detection, an unprecedented high-intensity approach (ultra-deep sequencing of plasma cell-free DNA (cfDNA) with broad genomic coverage) is needed to address intra-patient and population-level heterogeneity. We present initial results with this approach in patients (pts) with metastatic breast (BC), non-small cell lung (NSCLC), and castration-resistant prostate cancer (CRPC). Methods: Blood and tissue were prospectively collected w/in 6 wks with no intervening therapy change from pts with de novo or progressive cancer. cfDNA and white blood cell (WBC) genomic DNA from each pt were sequenced with a 508-gene panel (2 Mb; >60,000X raw depth). cfDNA variant calling used molecular barcoding for error correction and filtering for WBC variants. Tissue was sequenced using the MSK-IMPACT assay (410 genes, 1.4 Mb, >500X depth) blinded to plasma/WBC sequencing. Variants were classified as clonal or subclonal based on tumor sequencing in BC and NSCLC. Results: Of 161 eligible pts, 124 (39 BC, 41 NSCLC, and 44 CRPC) were evaluable for concordance. In tissue, 864 variants were detected across the 3 tumor types, with 627 (73%) also detected in plasma: single nucleotide variants/indels - 75%, fusions - 67%, and copy number alterations - 58%. In 90% of pts, at least 1 of the variants detected in tumor tissue was also detected in plasma: BC - 97%, NSCLC - 85%, CRPC - 84%. Most actionable mutations detected in tissue were also detected in plasma (54/71, 76%; SNVs only: 28/31, 90%). A subset of driver mutations (eg. in ESR1, PIK3CA, ERBB2, EGFR) were observed in plasma but not tissue. Clonal variants in tissue were more likely to be detected in plasma than subclonal variants (p<.001). Conclusions: This novel, high-intensity ctDNA assay enabled broad detection of genomic variants in plasma at high rates of concordance with corresponding tumor tissue, providing strong evidence for tumor-derivation of these signals. This study will inform development of a high-intensity sequencing approach for early cancer detection.


2017 ◽  
Author(s):  
Jaime Iranzo ◽  
Iñigo Martincorena ◽  
Eugene V. Koonin

AbstractCancer genomics has produced extensive information on cancer-associated genes but the number and specificity of cancer driver mutations remains a matter of debate. We constructed a bipartite network in which 7665 tumors from 30 cancer types are connected via shared mutations in 198 previously identified cancer-associated genes. We show that 27% of the tumors can be assigned to statistically supported modules, most of which encompass 1-2 cancer types. The rest of the tumors belong to a diffuse network component suggesting lower gene-specificity of driver mutations. Linear regression of the mutational loads in cancer-associated genes was used to estimate the number of drivers required for the onset of different cancers. The mean number of drivers is ~2, with a range of 1 to 5. Cancers that are associated to modules had more drivers than those from the diffuse network component, suggesting that unidentified and/or interchangeable drivers exist in the latter.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4317
Author(s):  
Peng-Chan Lin ◽  
Yu-Min Yeh ◽  
Hui-Ping Hsu ◽  
Ren-Hao Chan ◽  
Bo-Wen Lin ◽  
...  

Tumor heterogeneity results in more than 50% of hypermutated cancers failing to respond to standard immunotherapy. There are numerous challenges in terms of drug resistance, therapeutic strategies, and biomarkers in immunotherapy. In this study, we analyzed primary tumor samples from 533 cancer patients with six different cancer types using deep targeted sequencing and gene expression data from 78 colorectal cancer patients, whereby driver mutations, mutational signatures, tumor-associated neoantigens, and molecular cancer evolution were investigated. Driver mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Most hypermutated endometrial and pancreatic cancer patients carry genetic mutations in EGFR, FBXW7, and PIK3CA that are linked to immunotherapy resistance, while hypermutated head and neck cancer patients carry genetic mutations associated with better treatment responses, such as ATM and BRRCA2 mutations. APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and DNA repair defects are mutational drivers that are signatures for hypermutated cancer. Cancer driver mutations and other mutational signatures are associated with sensitivity or resistance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using computational prediction, we identified NF1 p.T700I and NOTCH1 p.V2153M as tumor-associated neoantigens, representing potential therapeutic targets for immunotherapy. Sequential mutations were used to predict hypermutated cancers based on genomic evolution. Using a logistic model, we achieved an area under the curve (AUC) = 0.93, accuracy = 0.93, and sensitivity = 0.81 in the testing set. The sequential patterns were distinct among the six cancer types, and the sequential mutation order of MSH2 and the coexisting BRAF genetic mutations influenced the hypermutated phenotype. The TP53~MLH1 and NOTCH1~TET2 sequential mutations impacted colorectal cancer survival (p-value = 0.027 and 0.0001, respectively) by reducing the expression of PTPRCAP (p-value = 1.06 × 10−6) and NOS2 (p-value = 7.57 × 10−7) in immunity. Sequential mutations are significant for hypermutated cancers, which are characterized by mutational heterogeneity. In addition to driver mutations and mutational signatures, sequential mutations in cancer evolution can impact hypermutated cancers. They characterize potential responses or predictive markers for hypermutated cancers. These data can also be used to develop hypermutation-associated drug targets and elucidate the evolutionary biology of cancer survival. In this study, we conducted a comprehensive analysis of mutational patterns, including sequential mutations, and identified useful markers and therapeutic targets in hypermutated cancer patients.


2021 ◽  
Author(s):  
Maxwell A Sherman ◽  
Adam Yaari ◽  
Oliver Priebe ◽  
Felix Dietlein ◽  
Po-Ru Loh ◽  
...  

An ongoing challenge to better understand and treat cancer is to distinguish neutral mutations, which do not affect tumor fitness, from those that provide a proliferative advantage. However, the variability of mutation rates has limited our ability to model patterns of neutral mutations and therefore identify cancer driver mutations. Here, we predict cancer-specific mutation rates genome-wide by leveraging deep neural networks to learn mutation rates within kilobase-scale regions and then refining these estimates to test for evidence of selection on combinations of mutations by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and used these maps to identify new putative drivers in understudied regions of the genome including cryptic alternative-splice sites, 5 prime untranslated regions and infrequently mutated genes. These results, available for exploration via web interface, indicate the potential for high-resolution neutral mutation models to empower further driver discovery as cancer sequencing cohorts grow.


2017 ◽  
Author(s):  
Rebecca C. Poulos ◽  
Jake Olivier ◽  
Jason W. H. Wong

AbstractCytosine methylation (5mC) is vital for cellular function, and yet 5mC sites are also commonly mutated in the genome. In this study, we analyse the genomes of over 900 cancer samples, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association in colorectal cancers with microsatellite instability (MSI) or withPolymerase epsilon (POLE)exonuclease domain mutation. We describe a potential role for mismatch repair in the correction of mismatches resulting from deamination of 5mC, and propose a mutator phenotype to exist inPOLE-mutant cancers specifically at 5mC sites. We also associatePOLE-mutant hotspot coding mutations inAPCandTP53with CpG methylation. Analysing mutations across additional cancer types, we identify nucleotide excision repair- and AID/APOBEC-induced processes to underlie differential mutation-methylation associations in certain cancer subtypes. This study reveals differential associations vital for accurately mapping regional variation in mutation density and pinpointing driver mutations in cancer.


2018 ◽  
Vol 115 (26) ◽  
pp. E6010-E6019 ◽  
Author(s):  
Jaime Iranzo ◽  
Iñigo Martincorena ◽  
Eugene V. Koonin

Cancer genomics has produced extensive information on cancer-associated genes, but the number and specificity of cancer-driver mutations remains a matter of debate. We constructed a bipartite network in which 7,665 tumors from 30 cancer types are connected via shared mutations in 198 previously identified cancer genes. We show that about 27% of the tumors can be assigned to statistically supported modules, most of which encompass one or two cancer types. The rest of the tumors belong to a diffuse network component suggesting lower gene specificity of driver mutations. Linear regression of the mutational loads in cancer genes was used to estimate the number of drivers required for the onset of different cancers. The mean number of drivers in known cancer genes is approximately two, with a range of one to five. Cancers that are associated with modules had more drivers than those from the diffuse network component, suggesting that unidentified and/or interchangeable drivers exist in the latter.


2021 ◽  
pp. 1-6
Author(s):  
Ulf Strömberg ◽  
Brandon L. Parkes ◽  
Amir Baigi ◽  
Carl Bonander ◽  
Anders Holmén ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 821
Author(s):  
Wanglong Qiu ◽  
Chia-Yu Kuo ◽  
Yu Tian ◽  
Gloria H. Su

Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.


Sign in / Sign up

Export Citation Format

Share Document