scholarly journals Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257042
Author(s):  
Sihua Peng ◽  
Shuyan Yang ◽  
Xi Zhang ◽  
Jingjing Jia ◽  
Qiulin Chen ◽  
...  

Imidacloprid is a neonicotinoid insecticide widely used in the production and cultivation of crops. In recent years, the extensive use of imidacloprid in agricultural production has resulted in large amounts of pesticide residues in agricultural products and the environment. Therefore, it is necessary to establish a rapid, accurate, sensitive and convenient method for detecting imidacloprid pesticide residues to ensure the safety of agricultural products and the environment. To clarify how to use the molecular imprinting method for the electrochemical rapid residue detection of imidacloprid. This paper selected reduced graphene oxide and gold nanoparticles as modifiers modified on screen-printed carbon electrodes (SPCE) chitosan as a functional monomer, and imidacloprid as template molecule to prepare molecularly imprinted polymer, and applied this sensor to the residue detection of imidacloprid. The results showed that the concentration of imidacloprid showed a good linear relationship with the peak response current, and the detection limit of imidacloprid was 0.5 μM, while the sensor had good repeatability and interference resistance. The recoveries of imidacloprid spiked on three samples, mango, cowpea and water, were in the range of 90–110% (relative standard deviation, RSD<5%), which proved the practicality and feasibility of the assay established in this paper. The results of this paper can be used as a basis for the research on the detection of imidacloprid pesticide residues in food or environment.

2011 ◽  
Vol 138-139 ◽  
pp. 1002-1006
Author(s):  
Bin Li ◽  
Fan Gang Zeng ◽  
Wei Fang Ma ◽  
Qi Chun Dong ◽  
Hai Tao Fan ◽  
...  

The 10 organophosphorus pesticides in fish can be rapidly extracted and separated by gel permeation chromatography, and the lipin and organophosphorus pesticides of fish can be seperated. The interfering matters can be well eliminated in this condition, and analysis is more rapid than other methods. The residues of 10 organophosphorus pesticides at same time can be identified and quantified simultaneously by GC-PFPD. This method is simple, rapid, and the average recovery ratios were 71.7%-80.9%.Good repeatability was obtained in all the cases with relative standard deviations (RSDs) lower 11%, and limit of detection was0.0003-0.004 mg·kg-1.


2010 ◽  
Vol 39 (6) ◽  
pp. 902-908 ◽  
Author(s):  
Jung-Ah Do ◽  
Hee-Jung Lee ◽  
Yong-Woon Shin ◽  
Won-Jo Choe ◽  
Kab-Ryong Chae ◽  
...  

2014 ◽  
Vol 605 ◽  
pp. 67-70 ◽  
Author(s):  
Mohsen Rahiminezhad ◽  
Seyed Jamaleddin Shahtaheri ◽  
Mohammad Reza Ganjali ◽  
Abbas Rahimi Rahimi Forushani

Molecular imprinting technology has become an interesting research area to the preparation of specific sorbent material for environmental and occupational sample preparation techniques (1). In the molecular imprinting technology, specific binding sites have been formed in polymeric matrix, which often have an affinity and selectivity similar to antibody-antigen systems (2). In molecular imprinted technology, functional monomers are arranged in a complementary configuration around a template molecule, then, cross-linker and solvent are also added and the mixture is treated to give a porous material containing nono-sized binding sites. After extraction of the template molecule by washing, vacant imprinted sites will be left in polymer, which are available for rebinding of the template or its structural analogue (3). The stability, convention of preparation and low cost of these materials make them particularly attractive (4). These synthetic materials have been used for capillary electrochromatography (5), chromatography columns (6), sensors (7), and catalyze system (8). Depending on the molecular imprinting approach, different experimental variables such as the type and amounts of functional monomers, porogenic solvent, initiator, monomer to cross-linker ratio, temperature, and etc may alter the properties of the final polymeric materials. In this work, chemometric approach based on Central Composite Design (CCD) was used to design the experiments as well as to find the optimum conditions for preparing appropriate diazinon molecularly imprinted polymer.


2007 ◽  
Vol 90 (2) ◽  
pp. 521-533 ◽  
Author(s):  
Nathan Paske ◽  
Bryan Berry ◽  
John Schmitz ◽  
Darryl Sullivan

Abstract In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 11 pesticide residues in soft drinks and sports drinks. The pesticide residues determined in this validation were alachlor, atrazine, butachlor, isoproturon, malaoxon, monocrotophos, paraoxon-methyl, phorate, phorate sulfone, phorate sulfoxide, and 2,4-dichlorophenoxyacetic acid (2,4-D) when spiked at 0.100 g/L (1.00 g/L for phorate). Samples were filtered (if particulate matter was present), degassed (if carbonated), and analyzed using liquid chromatography with tandem mass spectrometry. Quantitation was performed with matrix-matched external standard calibration solutions. The standard curve range for this assay was 0.0750 to 10.0 g/L. The calibration curves for all agricultural residues had coefficient of determination (r2) values greater than or equal to 0.9900 with the exception of 2 values that were 0.9285 and 0.8514. Fortification spikes at 0.100 g/L (1.00 g/L for phorate) over the course of 2 days (n = 8 each day) for 3 matrixes (7UP, Gatorade, and Diet Pepsi) yielded average percent recoveries (and percent relative standard deviations) as follows (n = 48): 94.4 (15.2) for alachlor, 98.2 (13.5) for atrazine, 83.1 (41.6) for butachlor, 89.6 (24.5) for isoproturon, 87.9 (24.4) for malaoxon, 96.1 (9.26) for monocrotophos, 101 (25.7) for paraoxon-methyl, 86.6 (20.4) for phorate, 101 (16.5) for phorate sulfone, 93.6 (25.5) for phorate sulfoxide, and 98.2 (6.02) for 2,4-D.


2001 ◽  
Vol 84 (5) ◽  
pp. 1569-1578 ◽  
Author(s):  
Lutz Alder ◽  
Wolfagang Korth ◽  
Alan L Patey ◽  
Henk A van der Schee ◽  
Siegmar Schoeneweiss

Abstract Proficiency test results from 5 countries involving 61 separate interlaboratory proficiency tests for pesticide residues were examined in this study. A total of 24 different matrixes and 869 relative standard deviations of the mean (or median) pesticide residue concentration were statistically evaluated in relation to the Horwitz function. The aim was to determine whether or not the concentration-dependent relationship described by Horwitz would hold for the much narrower range of chemicals and concentrations covered in routine pesticide residue analysis. Although for fatty (animal-derived) matrixes the variability increased as the concentration decreased in line with the Horwitz equation, the between-laboratories relative standard deviations for nonfatty matrixes (fruit, vegetables, and grain) remained at 25% over the entire concentration range of 1 μg/kg to 10 mg/kg for the pesticides studied. Given these findings, the Horwitz equation remains valid for calculating uncertainties involving pesticide residues in fatty matrixes. However, for pesticide residue analyses involving nonfatty matrixes, a constant relative standard deviation of 25% is more appropriate for calculating uncertainties, particularly when a reported result is assessed against a regulatory limit.


2010 ◽  
Vol 93 (6) ◽  
pp. 1692-1702 ◽  
Author(s):  
José L Tadeo ◽  
Consuelo Sánchez-Brunete ◽  
Beatriz Albero ◽  
Ana I Garcí-Valcárcel

Abstract Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document