scholarly journals Geogenic and anthropogenic sources identification and ecological risk assessment of heavy metals in the urban soil of Yazd, central Iran

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260418
Author(s):  
Somayeh Soltani-Gerdefaramarzi ◽  
Mohsen Ghasemi ◽  
Behzad Ghanbarian

Urban soil pollution with heavy metals is one of the environmental problems in recent years, especially in industrial cities. The aim of this study is to evaluate the role of geogenic and anthropogenic sources in the urban soil pollution in Yazd, Iran. For this purpose, 30 top-soil (0–10 cm) samples from Yazd within an area of 136.37 Km2 and population of nearly 656 thousand are collected, and the concentration of heavy elements is measured. To evaluate factors affecting the concentration of heavy elements in urban soils and determine their possible sources, Multivariate statistical analysis, including correlation coefficient, principal components analysis (PCA) and cluster analysis (CA) are performed. Enrichment Factor (EF), Geo-accumulation index (Igeo), and Modified potential ecological Risk Index (MRI) are used to assess the level and extension of contamination. Results of this study suggest that As, Cd, Pb and Zn are affected by anthropogenic source, while the concentrations of Fe, Mn, Ni, Cr, Co, Cu and Cs have come from mostly natural geologic sources. As, Cd and Pb are considerably enriched in the area, provided moderately enriched for the elements Mn, Zn and Cu. However, the other heavy elements show minimal enrichment. Igeo reveal that Co, Cr, Cs, Cu, Fe, Mn, Zn and Ni with negative values are unpolluted, Pb posed unpolluted to moderately polluted, and As and Cd represent high polluted. Based on the results of the ecological risk factor, the heavy metals of Mn, Ni, Cr, Zn and Cu have a low ecological risk level. More specifically, we find that Pb shows a moderated ecological risk in 39% of the urban soil in the studied area. As and Cd with respectively 100 and 72% contribution have considerable and very high ecological risk. According to the results of MRI, the area is in a very high ecological risk level, and appropriate management practice is essential to reduce the pollution of heavy elements in this area.

2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Proceedings ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Agnieszka Gruszecka-Kosowska

The aim of these investigations was to determine the impact of heavy metals bound with deposited particulate matter (PM) on contamination degree and related toxicological effects by calculating enrichment indices, namely, the geo-accumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as the ecological risk index (ERI) and modified hazard quotient (mHQ). Calculations were made based on the selected element concentrations determined in deposited PM samples in Krakow. The results of the investigations revealed that deposited PM was enriched in heavy metals. As Igeo provides information on the level of metal accumulation, it was found that deposited PM was practically uncontaminated with Be, Cd, and Tl (class 0) but heavily to extremely contaminated (class 5) with Co and Sn and extremely contaminated (class 6) with As, Ba, Cr, Cu, Li, Mn, Ni, Pb, Sr, Ti, V, and Zn. On the other hand, the calculated values of CF revealed very high contamination of deposited PM with Cd and Zn, considerable contamination with Sn, Pb, and As, and moderate contamination with Cu and Li. Values of calculated EF revealed that among the investigated elements, only Zn originated from anthropogenic sources. For Cd, a small influence of anthropogenic sources was observed. For Pb and Sn, non-crustal sources of emission were expected. The calculated ERI values indicated potential ecological risk levels that were very high for Cd and considerable for Zn, as well as low potential ecological risk for As, Co, Cr, Cu, Ni, Pb, and Tl. Moreover, the calculated mHQ values of severity of contamination were extreme for Zn, considerable for Cr, and moderate for As, Cu, and Pb. The analysis revealed that the impact of atmospheric and re-suspended PM on inhabitants constitutes a complex effect of a mixture of heavy metals simultaneously affecting human health.


2014 ◽  
Vol 955-959 ◽  
pp. 2280-2284
Author(s):  
Kai Yue Gong ◽  
Pei Shi Qi ◽  
Yun Zhi Liu

In this study, the distribution and enrichment characters of heavy metals were explored. And the potential ecological risk levels of heavy metals were evaluated by geo-accumulation index method and potential ecological risk index method. The concentrations of heavy metals in sediments of Harbin section of Songhua River are: Zn>Pb>Cr>Cu>Ni>Cd. The enrichment degree of Zn is the highest, while Cd is the lowest. The potential ecological risk indexes of heavy metals in the sediments of section of Songhua River in Harbin are: Cd>Pb>Cu>Zn>Ni>Cr. The main heavy metals pollution is Cd, which has low content but considerable potential ecological risk and contributes most to RI. The ecological risk level of heavy metals in the sediments of the section of Songhua River in Harbin is moderate.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2020 ◽  
Vol 10 (25) ◽  
Author(s):  
Temitope Ayodeji Laniyan ◽  
Adeniyi JohnPaul Adewumi

Background. Exposure to heavy metals emanating from cement production and other anthropogenic activities can pose ecological risks. Objectives. A detailed investigation was carried out to assess the contamination and ecological risk of heavy metals associated with dust released during cement production. Methods. Sixty samples, including 30 soils and 30 plants, were collected around Lafarge Cement Production Company. Control samples of soil and plants were collected in areas where human activities are limited. Samples were dried, sieved (for soil; 65 μm), packaged and analyzed using inductively coupled plasma mass spectrometry at Acme Laboratory in Canada. Results. The average concentration of heavy metals in soils of the area are: copper (Cu): 41.63 mg/kg; lead (Pb): 35.43 mg/kg; zinc (Zn): 213.64 mg/kg; chromium (Cr): 35.60 mg/kg; cobalt (Co): 3.84 mg/kg and nickel (Ni): 5.13 mg/kg. Concentrations of Cr in soils were above the recommended standards, while other metals were below recommended limits. The average concentrations of heavy metals in plants were: Cu: 26.32 mg/kg; Pb: 15.46 mg/kg; Zn: 213.94 mg/kg; Cr: 30.62 mg/kg; Co: 0.45 mg/kg and Ni: 3.77 mg/kg. Levels of heavy metals in plants were all above international limits. Geo-accumulation of metals in soils ranged between −0.15 and 6.32, while the contamination factor ranged between 0.53 and 119.59. Ecological risk index of heavy metals in soils ranged between 49.71 and 749. Discussion. All metals in soils of the study area except for Cr were below the allowable limits, while the levels of metals in plants were above the permissible limits. Levels of heavy metals reported in this study were higher than those from similar cement production areas. Soils around the Ewekoro cement production area were low to extremely contaminated by toxic metals. Cement production, processing, transportation in conjunction with the abandoned railway track in the area greatly contribute to the high degree of contamination observed in the area. Metal transfers from soil to plant are a common phenomenon. The metals pose low to considerable ecological risk. Conclusions. Anthropogenic sources, especially cement processing activities, release heavy metals which leads to progressive pollution of the environment and poses high ecological risk. Competing Interests. The authors declare no competing financial interests


Agriculture ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Haifang He ◽  
Longqing Shi ◽  
Guang Yang ◽  
Minsheng You ◽  
Liette Vasseur

Tea plantations have used many synthetic chemicals to ensure performance and control of pests. This has led to increased contamination of soils and reduced tea growth. We assessed the levels of heavy metals, including Cd, Cr, Pb, Cu, Ni, Zn, Hg, As, and pesticide residues, such as HCHs, biphenyl chrysanthemum ester, methamidophos, imidacloprid, permethrin, in the soil of tea plantations of Taiwan, Tibet, Guangdong, and Fujian. The Potential Ecological Risk Index and the Nemerow comprehensive pollution index were used to analyze the data. The results showed that risk indices in Tibet, Guangdong and Fuzhou were considered as moderate ecological harm level. Ecological risk assessment index of Anxi organic and Anxi conventional tea gardens suggested a “low” risk level. The Nemerow comprehensive pollution indices for soil pesticide residues in the tea plantations of Taiwan, Tibet, Anxi organic and Anxi conventional were considered mild. Guangdong and Fuzhou had values suggesting “slight pollution” levels. According to National Soil Environmental Quality Standard (GB15618-1995), soil in tea plantations in Taiwan, Tibet, and Anxi conventional matched the national first grade of soil quality and those from Guangdong, Fuzhou, and Anxi organic tea garden matched the national second grade.


2019 ◽  
Vol 6 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Amir Hossein Baghaie ◽  
Forough Aghili

Background: Soil pollution with heavy metals seriously threatens soil quality, food safety, and humanhealth. This study was conducted to determine the soil pollution level and ecological risk assessmentof different heavy metals in agricultural soils around Nakhlak Pb-Zn mine, located in Anarak district,Nain county of Isfahan province.Methods: A total of 50 soil samples were collected from agricultural land around Nakhlak mine andanalyzed to determine the concentrations of Pb, Cd, Zn, Ni, Cu, and Mn. The geo-accumulation index(Igeo), enrichment factor (EF), and potential ecological-risk index (Er) were used to assess the level ofsoil pollution with heavy metals.Results: The mean concentrations of Pb, Cd, Zn, Ni, Cu, and Mn were 355, 2.72, 347, 26, 36, and505 mg/kg, respectively, which were higher than the background values of world soils. Based on theIgeo index, the study area was moderately to heavily contaminated with Pb and Zn, uncontaminated tomoderate contaminated with Cd and Cu, and uncontaminated with Mn and Ni. According to the EFvalues, the study soil was moderately contaminated with Mn, Ni, and Cu, significantly contaminatedwith Cd and Zn, and highly enriched with Pb. The RI values showed a moderate level of heavy metalscontamination in the study soil.Conclusion: According to the results, the ecological risk of heavy metals for ecosystem in agriculturallands around Nakhlak Pb-Zn mine is moderate. However, the contamination status should be consideredperiodically.


2021 ◽  
Vol 5 (2) ◽  
pp. 18-27
Author(s):  
Hayder Issa ◽  
Azad Alshatteri

The current work accomplished a comprehensive evaluation of heavy metals pollution in soil of agricultural areas from Tanjaro sub-district, Sulaimaniyah province, Kurdistan Region, NE Iraq. Ninety soil samples were collected from thirty different locations. Concentrations of 16 heavy metals were measured by inductively coupled plasma optical emission spectrometry ICP-OES. The pollution index (PI), potential ecological risk index (Er), enrichment factor (EF), and ecological risk index (RI) were used to assess the pollution in soil samples. High levels of Li and Ni, and moderate Ba, Cd, Hg, and Pb according to the results of concentration analysis, pollution index (PI), and potential ecological risk (ERI). High levels of Cd and Hg according to the results of Er. Agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) suggested that heavy metals were generated from different natural and anthropogenic sources like natural weathering, fertilizer application, and transportation. Origins of Hg, Cd, Ni, and Pb are probably from activities like overuse of pesticides and fertilizers, whereas Pb could be exhausted from vehicle exhausts as well. Furthermore, spatial distributions revealed nonpoint source pollution for the studied heavy metals. The obtained results help in the remediation techniques of contaminated soils such as dilution with decontaminated soil or extraction or separation of heavy metals.


2021 ◽  
Author(s):  
Shengguang Yuan ◽  
wenqiang zhang ◽  
Wenye Li ◽  
Zhenhan Li ◽  
Minshan Wu ◽  
...  

Abstract Human activities cause heavy metals to enter the water body and consequently deposit in sediment with slow flow velocity, however little studies have explored the spatial distribution and ecological risk of heavy metals in sediments. The risk, spatial distribution and toxicity of heavy metals in sediment were investigated along the North Canal in the Beijing-Tianjin area. The study revealed that the mean concentrations of heavy metals in sediments exhibited a descending order of Zn > Cr > As > Cu > Pb > Ni > Co > Cd. The average geoaccumulation index (Igeo) value of Cd was highest and ranged from 0.2 to 2.91. Moreover, the greatest contamination of Cd (the Igeo values > 2) was observed in three sampling sites around the Tianjin City. The pollution load index (PLI) of all sampling points were greater than 1, which indicated the inflow of heavy metals originated from anthropogenic sources. The risk index (RI) values of three sampling points were greater than 300, which demonstreated high potential ecological risk. With regards to the toxicity assessment of combined heavy metals, there were two probable effect concentration (PEC) quotient (Qm-PEC) values greater than 0.5 which suggested potential toxicity to certain sediment-dwelling organisms. Identification of the possible sources and factors contributing to the content and spatial distribution of heavy metals could assist in improvement of the water quality, as well as support efficient management strategies to restoration of the environment.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6711
Author(s):  
Mu You ◽  
Yunhu Hu ◽  
Yule Yan ◽  
Jie Yao

In order to fully understand the morphological characteristics and pollution status of heavy metals in the dewatered sludge of Huainan Municipal sewage treatment plant, the physical and chemical properties were analyzed, and the content and occurrence forms of heavy metals (As, Cu, Zn, Pb, Cd, Cr, and Ni) in the sludge were studied using the geological accumulation method (Igeo), risk assessment coding method (RAC), and potential ecological risk index method to evaluate the ecological risk. The results showed that the municipal sludge in Huainan was rich in nutrients, with good prospects for agricultural utilization. There were differences in the morphological distributions of different heavy metals. The Igeo values for Ni, As, Cr, and Pb were below 0. The results of RAC indicated that the risk level of Cr in sludge was a low risk, and those of other heavy metals were moderate risks. The potential ecological risk of Cd had the highest potential ecological risk, and the other six metals were of low ecological risk. This conclusion can provide basic data and a theoretical reference for the comprehensive utilization of sludge in sewage treatment plants.


Sign in / Sign up

Export Citation Format

Share Document