scholarly journals Role of tissue factor in delayed bone repair induced by diabetic state in mice

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260754
Author(s):  
Hiroki Ehara ◽  
Kohei Tatsumi ◽  
Yoshimasa Takafuji ◽  
Naoyuki Kawao ◽  
Masayoshi Ishida ◽  
...  

Background Tissue factor (TF) is the primary activator of the extrinsic coagulation protease cascade. Although TF plays roles in various pathological states, such as thrombosis, inflammatory diseases, cancer, and atherosclerosis, its involvement in bone metabolism remains unknown. Materials and methods The present study examined the roles of TF in delayed bone repair induced by a diabetic state in mice using wild-type (WT) and low TF-expressing (LTF) male mice. A diabetic state was induced by intraperitoneal injections of streptozotocin (STZ). Results A prolonged diabetic state significantly reduced total and trabecular bone mineral densities (BMD) as well as cortical bone thickness in WT and LTF mice; these BMD parameters were similar between WT and LTF mice treated with or without STZ. The diabetic state induced in WT mice delayed the repair of the femur following injury. The diabetic state induced in LTF mice was associated with further delays in bone repair. In in vitro experiments, TF significantly decreased receptor activator of nuclear factor-κB ligand-induced osteoclast formation and osteoclastogenic gene expression in RAW264.7 cells. However, it did not affect the gene expression levels of runt-related transcription factor 2 and osterix as well as alkaline phosphatase activity in mouse primary osteoblasts. Conclusion Low TF state was associated with enhanced bone repair delay induced by diabetic state in mice. The TF-induced suppression of bone remodeling may be a contributing factor to the protective effects of TF against delayed bone repair in a diabetic state.

2022 ◽  
Vol 12 ◽  
Author(s):  
Yanhui Tan ◽  
Minhong Ke ◽  
Zhichao Li ◽  
Yan Chen ◽  
Jiehuang Zheng ◽  
...  

It is a viable strategy to inhibit osteoclast differentiation for the treatment of osteolytic diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastases. Here we assessed the effects of insulicolide A, a natural nitrobenzoyl sesquiterpenoid derived from marine fungus, on receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and its protective effects on LPS-induced osteolysis mice model in vivo. The results demonstrated that insulicolide A inhibited osteoclastogenesis from 1 μM in vitro. Insulicolide A could prevent c-Fos and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) nuclear translocation and attenuate the expression levels of osteoclast-related genes and DC-STAMP during RANKL-stimulated osteoclastogenesis but have no effects on NF-κB and MAPKs. Insulicolide A can also protect the mice from LPS-induced osteolysis. Our research provides the first evidence that insulicolide A may inhibit osteoclastogenesis both in vitro and in vivo, and indicates that it may have potential for the treatment of osteoclast-related diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Li ◽  
Guangyao Jiang ◽  
Xuantao Hu ◽  
Daishui Yang ◽  
Tingting Tan ◽  
...  

Background: Breast cancer bone metastasis and osteoporosis are both severe diseases that seriously threaten human health. These diseases are closely associated with osteolytic lesions. And osteoclasts are the key targets of this pathological process. Given the lack of effective preventive or treatment options against these diseases, the exploitation of new pharmacological agents is critically required.Method: We assessed the efficacy of punicalin on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation, F-actin ring formation, gene expression, bone resorption, nuclear factor-κB (NF-κB) as well as on mitogen-activated protein kinase (MAPK) signaling pathways and molecular docking in vitro. The impact of punicalin on breast cancer-induced osteoclastogenesis, breast cancer cell proliferation, and apoptosis were examined. Transwell assays were also performed. Moreover, we evaluated in vivo effects of punicalin in postmenopausal osteoporosis models and breast cancer bone metastasis model by micro-CT scanning and histomorphometry.Results: Punicalin inhibited osteoclast formation, F-actin ring formation, bone resorption, as well as osteoclast-related gene expression by suppressing the NF-κB signaling pathway. In vitro, punicalin also suppressed the breast cancer-induced osteoclastogenesis, and proliferation, migration as well as invasion of MDA-MB-231 cells and dose-dependently promoted their apoptosis. In vivo, punicalin significantly suppressed breast cancer-induced osteolysis, breast cancer-associated bone metastasis, and ovariectomized (OVX)-mediated osteoporosis by repressing osteoclast and breast cancer cell.Conclusion: Punicalin is expected to offer a novel treatment for the prevention of osteolysis diseases, including osteoporosis and breast cancer-associated osteolysis.


2022 ◽  
Author(s):  
Laura Robrahn ◽  
Aline Dupont ◽  
Sandra Jumpertz ◽  
Kaiyi Zhang ◽  
Christian H. Holland ◽  
...  

The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a -deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro , HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


Author(s):  
Amlan Chakraborty ◽  
Venkatakrishna R. Jala ◽  
Sutirtha Chakraborty ◽  
R. Eric Berson ◽  
M. Keith Sharp ◽  
...  

Wall shear stress (WSS) plays a key role in altering intracellular pathways and gene expression of endothelial cells, and has significant impacts on atherosclerotic plaque development (1–3). Further, the atherogenic regulators Leukotriene B4 (LTB4) and Lipopolysaccharide (LPS) have significant impacts on the pathophysiology of many inflammatory diseases. This study investigates the effects of oscillatory shear directionality on pro-atherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of LTB4 and LPS. An orbital shaker was used to expose the endothelial cells to oscillatory shear in culture dishes, and Computational fluid dynamics (CFD) was applied to quantify the shear stress on the bottom of the orbiting dish. Directionality of oscillatory shear was characterized by a newly developed hemodynamic parameter — Directional oscillatory shear index (DOSI), which was demonstrated in a previous study to significantly impact cell morphology (4). Results showed that DOSI significantly altered gene expression. Therefore, directionality of shear modulates atherosclerotic gene expression in vitro and thus, may influence the formation of atherosclerotic plaque in vivo.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Frank C. Cackowski ◽  
Judith L. Anderson ◽  
Kenneth D. Patrene ◽  
Rushir J. Choksi ◽  
Steven D. Shapiro ◽  
...  

Abstract Increased osteoclastogenesis and angiogenesis occur in physiologic and pathologic conditions. However, it is unclear if or how these processes are linked. To test the hypothesis that osteoclasts stimulate angiogenesis, we modulated osteoclast formation in fetal mouse metatarsal explants or in adult mice and determined the effect on angiogenesis. Suppression of osteoclast formation with osteoprotegerin dose-dependently inhibited angiogenesis and osteoclastogenesis in metatarsal explants. Conversely, treatment with parathyroid hormone related protein (PTHrP) increased explant angiogenesis, which was completely blocked by osteoprotegerin. Further, treatment of mice with receptor activator of nuclear factor-κB ligand (RANKL) or PTHrP in vivo increased calvarial vessel density and osteoclast number. We next determined whether matrix metalloproteinase-9 (MMP-9), an angiogenic factor predominantly produced by osteoclasts in bone, was important for osteoclast-stimulated angiogenesis. The pro-angiogenic effects of PTHrP or RANKL were absent in metatarsal explants or calvaria in vivo, respectively, from Mmp9−/− mice, demonstrating the importance of MMP-9 for osteoclast-stimulated angiogenesis. Lack of MMP-9 decreased osteoclast numbers and abrogated angiogenesis in response to PTHrP or RANKL in explants and in vivo but did not decrease osteoclast differentiation in vitro. Thus, MMP-9 modulates osteoclast-stimulated angiogenesis primarily by affecting osteoclasts, most probably by previously reported migratory effects on osteoclasts. These results clearly demonstrate that osteoclasts stimulate angiogenesis in vivo through MMP-9.


Author(s):  
Carsten Geiß ◽  
Elvira Salas ◽  
Jose Guevara-Coto ◽  
Anne Régnier-Vigouroux ◽  
Rodrigo A Mora-Rodríguez

Macrophages are essential innate immune cells characterized by a high diversity and plasticity. In vitro, their full dynamic range of activation profiles include the classical pro-inflammatory (M1) and the alternative anti-inflammatory (M2) program. Bistability usually arises in biological systems that contain a positive-feedback loop or a mutually inhibitory, double-negative-feedback loop, which are common regulatory motifs reported for macrophage transitions from one activation state to the other one. This switch-like behavior of macrophage is observed at four different levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1 and NF-KB/p50-p65) and M2 (STAT3 and NF-KB/p50-p50) signaling pathways. Second, a switch-like behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, those changes impact metabolic gene expression leading to several switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis and nitrogen metabolism. Fourth, metabolic changes are monitored by specialized metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining the signals to promote either M1 or M2 activation. The targeting of robust molecular switches has the potential to treat a broad range of widespread diseases such as sepsis, cancer or chronic inflammatory diseases.


2021 ◽  
Vol 9 (10) ◽  
pp. 2071
Author(s):  
Georgia Saxami ◽  
Evangelia N. Kerezoudi ◽  
Evdokia K. Mitsou ◽  
Georgios Koutrotsios ◽  
Georgios I. Zervakis ◽  
...  

In recent years, modulation of gut microbiota through prebiotics has garnered interest as a potential to ameliorate intestinal barrier dysfunction. The aim of the study was to examine the in vitro effect of fermentation supernatants (FSs) from rich in β-glucan Pleurotus eryngii mushrooms on the expression levels of tight junctions (TJs) genes in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Mushrooms were fermented using fecal inocula in an in vitro batch culture model. Caco-2 cells were subjected to LPS and FS treatment under three different conditions: pre-incubation with FS, co- and post-incubation. Reverse transcription PCR was applied to measure the expression levels of zonulin-1, occludin and claudin-1 genes. FSs from P. eryngii mushrooms led to a significant upregulation of the TJs gene expression in pre-incubation state, indicating potential preventive action. Down-regulation of all TJs gene expression levels was observed when the cells were challenged with LPS. The FS negative control (gut microbiota of each donor with no carbohydrate source) exhibited a significant upregulation of TJs expression levels compared to the cells that were challenged with LPS, for all three conditions. Overall, our data highlighted the positive and potential protective effects of P. eryngii mushrooms in upregulation of TJs’ genes.


2022 ◽  
Author(s):  
Qiang Liu ◽  
Xiaohua Lei ◽  
Zhenyu Cao ◽  
Ju Zhang ◽  
Likun Yan ◽  
...  

Abstract Background Liver fibrosis represent a major global health care burden. Data emerging from recent advances have suggested TRPM8, a member of the transient receptor potential (TRP) family of ion channels, plays an essential role in various chronic inflammatory diseases. However, its role in liver fibrosis remains unknown. Herein, we assessed the potential effect of TRPM8 in liver fibrosis. Methods The effect of TRPM8 was evaluated using specimens obtained from classic murine models of liver fibrosis, namely wild-type (WT) and TRPM8−/− (KO) fibrotic mice after carbon tetrachloride (CCl4) or bile duct ligation (BDL) treatment. The role of TRPM8 was systematically evaluated using specimens obtained from the aforementioned animal models after various in vivo and in vitro experiments. Results Clinicopathological analysis has shown TRPM8 expression was upregulated in tissue samples from cirrhosis patients and fibrotic mice. TRPM8 deficiency not only attenuated inflammation and fibrosis progression in mice, but also helped to alleviate symptoms of cholangiopathies. Moreover, reduction in S100A9 and increase in HNF4α expressions were observed in liver of CCl4 and BDL treated TRPM8 KO mice. Strong regulatory linkage between S100A9 and HNF4α was also noticed in L02 cells underwent siRNA-mediated S100A9 knockdown and S100A9 overexpressing plasmid transfection. Lastly, alleviative effect of a selective TRPM8 antagonist was confirmed in vivo. Conclusion These findings suggest TRPM8 deficiency may exert protective effects against inflammation, cholangiopathies and fibrosis through S100A9-HNF4α signaling mechanistically. M8-B might be a promising therapeutic candidate for liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document