scholarly journals Simultaneous differentiation of articular and transient cartilage: WNT-BMP interplay and its therapeutic implication

2020 ◽  
Vol 64 (1-2-3) ◽  
pp. 203-211
Author(s):  
Tathagata Biswas ◽  
Akrit P. Jaswal ◽  
Upendra S. Yadav ◽  
Amitabha Bandyopadhyay

Limb skeleton forms through the process of endochondral ossification. This process of osteogenesis proceeds through an intermediate cartilage template and involves several stages of chondrocyte maturation and eventual bone formation. During the process of endochondral ossification, interplay between BMP and WNT signaling regulate simultaneous differentiation of articular and transient cartilage. In this review, we focus on the recent literature which explores the simultaneous differentiation of these two different types of cartilage. We discuss a new paradigm of developmental biology-inspired tissue engineering of bone and cartilage grafts and provide novel insight into treatment of osteoporosis.

2019 ◽  
Vol 16 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Sneh Gautam ◽  
Sonu Ambwani

Tissue engineering is a multidisciplinary field of biomedicine that is being used to develop a new tissue or restore the function of diseased tissue/organ. The main objective of tissue engineering is to overcome the shortage of donor organs. Tissue engineering is mainly based on three components i.e. cells, scaffold and growth factors. Among these three components, scaffold is a primary influencing factor that provides the structural support to the cells and helps to deliver the growth factors which stimulate the proliferation and differentiation of cells to regenerate a new tissue. The properties of a scaffold mainly depend upon types of biomaterial and fabrication techniques that are used to fabricate the scaffold. Biofabrication facilitates the construction of three-dimensional complex of living (cells) and non-living (signaling molecules and extracellular matrices polymers etc.) components. Biofabrication has potential application especially in skin and bone tissue regeneration due to its accuracy, reproducibility and customization of scaffolds as well as cell and signaling molecule delivery. In this review article, different types of biomaterials and fabrication techniques have been discussed to fabricate of a nanofibrous scaffold along with different types of cells and growth factor which are used for tissue engineering applications to regenerate a new tissue. Among different techniques to fabricate a scaffold, electrospinning is simple and cost effective technique that has been mainly focused in the review to produce nanofibous scaffold. On the other hand, a tissue might be repair itself and restore to its normal function inside the body by applying the principle of regenerative medicine.


2019 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Eko Adi Prasetyanto

Injectable hydrogels, a class of hydrogel, have received a lot of attention in biomedical applications due to its versatility. It is reported that injectable hydrogel can be applied in various biomedical procedures for example as submucosal fluid cushion, periodontal implant, and cartilage and bone tissue engineering. In addition to its easy delivery (implantation), this class of hydrogel can be tailored to match specific applications. The customization of this hydrogel can be easily executed by changing polymeric backbone of hydrogel, choosing different types of crosslinking or by adding nanoparticles to form hybrid hydrogel systems. Physical properties, compatibility and biodegradability of the resulted materials are important factors for designing injectable hydrogels. In this Recent Research Progress, we highlight the state-of-the-art injectable hydrogels and note the general requirements of an ideal injectable hydrogel for biomedical applications.


2018 ◽  
Vol 6 (16) ◽  
pp. 2385-2412 ◽  
Author(s):  
Xiaohong Wang ◽  
Heinz C. Schröder ◽  
Werner E. G. Müller

Physiological amorphous polyphosphate nano/micro-particles, injectable and implantable, attract and stimulate MSCs into implants for tissue regeneration.


2021 ◽  
pp. 174804852199056
Author(s):  
Baruch Shomron ◽  
Amit Schejter

This study examines how media representations of Palestinian-Israeli politicians, can help community members realize their capabilities. The study’s database is comprised of 1,207 interviews conducted with Palestinian-Israeli politicians on news and current affairs programs on the three national television channels and the two national radio stations in Israel, for 24 months (2016-2017). We identified and analyzed the differences in the modes of representation between national and local Palestinian-Israeli politicians and between Palestinian-Israeli parliament members in the Joint List and Palestinian-Israeli parliament members in Zionist parties, all through the capabilities prism. In this study, we demonstrated how different types of Palestinian-Israeli politicians may potentially affect the realization of different political functions and capabilities. Analyzing political representations in the media through the theoretical framework of the ‘capabilities approach’ contributes to a more comprehensive insight into the roles the media can play promoting people’s wellbeing and human rights, relative to traditional media theories.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Magali Seguret ◽  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.


2021 ◽  
pp. 026975802110106
Author(s):  
Raoul Notté ◽  
E.R. Leukfeldt ◽  
Marijke Malsch

This article explores the impact of online crime victimisation. A literature review and 41 interviews – 19 with victims and 22 with experts – were carried out to gain insight into this. The interviews show that most impacts of online offences correspond to the impacts of traditional offline offences. There are also differences with offline crime victimisation. Several forms of impact seem to be specific to victims of online crime: the substantial scale and visibility of victimhood, victimisation that does not stop in time, the interwovenness of online and offline, and victim blaming. Victims suffer from double, triple or even quadruple hits; it is the accumulation of different types of impact, enforced by the limitlessness in time and space, which makes online crime victimisation so extremely invasive. Furthermore, the characteristics of online crime victimisation greatly complicate the fight against and prevention of online crime. Finally, the high prevalence of cybercrime victimisation combined with the severe impact of these crimes seems contradictory with public opinion – and associated moral judgments – on victims. Further research into the dominant public discourse on victimisation and how this affects the functioning of the police and victim support would be valuable.


Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jean-François Mboumba ◽  
Maxime R. Hervé ◽  
Véronique Guyot ◽  
Frederic Ysnel

Abstract The study contributes to the knowledge of species composition and biogeographical affinities of savannas rodent in Gabon. Unlike small rodents in Gabonese forests, there is little data on the diversity of small rodents in Gabonese savannas. The diversity and distribution of rodent murid communities was studied in four different types of savanna in Gabon: Coastal Basin (South-West), Lopé/Okanda (in the Center), Batéké Plateaux (Southeastern) and Ngougnié/ N’yanga (in the South). A total of 428 individuals representing six species were captured over 11,920 trap nights. Trap success was highly variable (2.2–6.9 %). The most abundant species were Mus minutoides (69%) followed by Lemniscomys striatus (21.5%). Indices of species richness varied from 2 to 5 and diversity (Shannon and Weaver) was low in the four savannas with the highest value at Ngougnié/N’yanga (H′ = 1.2). Species distributions show that Gabonese savanna small rodents conform to four distribution types, with one species known from Zambesian savannas exhibiting austral affinities (Pelomys campanae: occurs in three southern savannas). This new information provides important insight into the biogeography of small rodents at a local and regional level. Moreover, the correspondence analysis highlighted an influence of local ecological factors on population abundance.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1872
Author(s):  
Shaowei Guo ◽  
Idan Redenski ◽  
Shulamit Levenberg

Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting “cell-free” therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tina Briolay ◽  
Tacien Petithomme ◽  
Morgane Fouet ◽  
Nelly Nguyen-Pham ◽  
Christophe Blanquart ◽  
...  

Abstract Background As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. Main Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of ‘smart’ drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. Conclusion This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting “type” for efficient and specific delivery of diverse anticancer therapies.


Sign in / Sign up

Export Citation Format

Share Document