scholarly journals Platone e il vegetarianismo nel Timeo

Plato Journal ◽  
2021 ◽  
Vol 21 ◽  
pp. 111-124
Author(s):  
Federico Casella

L’articolo analizza la descrizione della natura delle piante e la tacita giustificazione del vegetarianismo fornite da Platone nel Timeo. Tale pratica alimentare sembra assumere un’utilità esclusivamente fisiologica: potrebbe darsi che Platone si fosse opposto a quanti professavano il vegetarianismo in qualità di mezzo necessario per purificare l’anima e per raggiungere la felicità, come gli orfici, i pitagorici, Empedocle ma anche il suo discepolo Senocrate. Attraverso il particolare valore attribuito a una dieta vegetariana, Platone priva di validità la pretesa degli altri filosofi: solo lo studio delle idee permette di ottenere la felicità.  Abstract. The aim of this paper is to analyse Plato’s description of plants and his tacit justification of vegetarianism in the Timaeus. This practice seems to possess exclusively a physiological relevance: I argue that Plato is opposing the idea of vegetarianism as a superior way to purify one’s soul and achieve happiness, how it was being professed by the Orphics, the Pythagoreans, Empedocles, and even by his disciple Xenocrates. In the Timaeus, with the justification of vegetarianism only for physiological purposes, Plato is discrediting other philosophers’ conception of vegetarianism and perfect life: only the study of the noetic world grants ultimate happiness.

Author(s):  
T. E. Hutchinson ◽  
D. E. Johnson ◽  
A. C. Lee ◽  
E. Y. Wang

Microprobe analysis of biological tissue is now in the end phase of transition from instrumental and technique development to applications pertinent to questions of physiological relevance. The promise,implicit in early investigative efforts, is being fulfilled to an extent much greater than many had predicted. It would thus seem appropriate to briefly report studies exemplifying this, ∿. In general, the distributions of ions in tissue in a preselected physiological state produced by variations in the external environment is of importance in elucidating the mechanisms of exchange and regulation of these ions.


1982 ◽  
Vol 47 (02) ◽  
pp. 166-172 ◽  
Author(s):  
Yoav Sharoni ◽  
Maria C Topal ◽  
Patricia R Tuttle ◽  
Henry Berger

SummaryOf the two cell types it was possible to culture from the dissociated rat liver, hepatocytes and Kupffer cells, only the former were fibrinolytically active. Rat hepatocytes during the first 24 hr in culture secreted two plasminogen activators with molecular weights identical to those found in rat plasma, an 80,000-dalton form (PA-80) and a 45,000-dalton form (PA-45). Partially purified preparations of plasminogen activators from both sources were subjected to isoelectric focusing (IEF) to compare characteristics further. There were three distinct peaks of PA-45 in each preparation with isoelectric points of 7.1, 7.2 and 7.4; all electrophoretic forms had the same low affinity to fibrin. PA-80 from both sources displayed similar IEF profiles with forms ranging from pH values of 7 to 8, all with the same high affinity to fibrin. The major form of PA-80 in the plasma preparation had an isoelectric point of 7.9 whereas that in the hepatocyte preparation had an isoelectric point of 7.6. The isolated perfused rat liver was also shown to produce both PA-80 and PA-45 emphasizing the physiological relevance of the findings with hepatocytes. It is concluded that in the rat hepatocytes contribute to the plasma profile with regard to the plasminogen activator content.


2019 ◽  
Vol 20 (9) ◽  
pp. 861-872 ◽  
Author(s):  
Andrea Bellelli ◽  
Emanuele Caglioti

Cooperative ligand binding is a fundamental property of many biological macromolecules, notably transport proteins, hormone receptors, and enzymes. Positive homotropic cooperativity, the form of cooperativity that has greatest physiological relevance, causes the ligand affinity to increase as ligation proceeds, thus increasing the steepness of the ligand-binding isotherm. The measurement of the extent of cooperativity has proven difficult, and the most commonly employed marker of cooperativity, the Hill coefficient, originates from a structural hypothesis that has long been disproved. However, a wealth of relevant biochemical data has been interpreted using the Hill coefficient and is being used in studies on evolution and comparative physiology. Even a cursory analysis of the pertinent literature shows that several authors tried to derive more sound biochemical information from the Hill coefficient, often unaware of each other. As a result, a perplexing array of equations interpreting the Hill coefficient is available in the literature, each responding to specific simplifications or assumptions. In this work, we summarize and try to order these attempts, and demonstrate that the Hill coefficient (i) provides a minimum estimate of the free energy of interaction, the other parameter used to measure cooperativity, and (ii) bears a robust statistical correlation to the population of incompletely saturated ligation intermediates. Our aim is to critically evaluate the different analyses that have been advanced to provide a physical meaning to the Hill coefficient, and possibly to select the most reliable ones to be used in comparative studies that may make use of the extensive but elusive information available in the literature.


2021 ◽  
Vol 9 (4) ◽  
pp. 749
Author(s):  
Gülbahar Abaramak ◽  
Jaime Ricardo Porras-Domínguez ◽  
Henry Christopher Janse van Rensburg ◽  
Eveline Lescrinier ◽  
Ebru Toksoy Öner ◽  
...  

Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 315
Author(s):  
Luca Finetti ◽  
Thomas Roeder ◽  
Girolamo Calò ◽  
Giovanni Bernacchia

Tyramine is a neuroactive compound that acts as neurotransmitter, neuromodulator, and neurohormone in insects. Three G protein-coupled receptors, TAR1-3, are responsible for mediating the intracellular pathway in the complex tyraminergic network. TAR1, the prominent player in this system, was initially classified as an octopamine receptor which can also be activated by tyramine, while it later appeared to be a true tyramine receptor. Even though TAR1 is currently considered as a well-defined tyramine receptor and several insect TAR1s have been characterized, a defined nomenclature is still inconsistent. In the last years, our knowledge on the structural, biochemical, and functional properties of TAR1 has substantially increased. This review summarizes the available information on TAR1 from different insect species in terms of basic structure, its regulation and signal transduction mechanisms, and its distribution and functions in the brain and the periphery. A special focus is given to the TAR1-mediated intracellular signaling pathways as well as to their physiological role in regulating behavioral traits. Therefore, this work aims to correlate, for the first time, the physiological relevance of TAR1 functions with the tyraminergic system in insects. In addition, pharmacological studies have shed light on compounds with insecticidal properties having TAR1 as a target and on the emerging trend in the development of novel strategies for pest control.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1184
Author(s):  
Jean-Marc Zingg ◽  
Adelina Vlad ◽  
Roberta Ricciarelli

Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3040
Author(s):  
Zainab Hussain ◽  
Jeremy Nigri ◽  
Richard Tomasini

Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.


2016 ◽  
Vol 113 (17) ◽  
pp. 4788-4793 ◽  
Author(s):  
Monica Markovski ◽  
Jessica L. Bohrhunter ◽  
Tania J. Lupoli ◽  
Tsuyoshi Uehara ◽  
Suzanne Walker ◽  
...  

To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by the penicillin-binding proteins (PBPs). As their name implies, these proteins are the targets of penicillin and related antibiotics. We and others have shown that the PG synthases PBP1b and PBP1a ofEscherichia colirequire the outer membrane lipoproteins LpoA and LpoB, respectively, for their in vivo function. Although it has been demonstrated that LpoB activates the PG polymerization activity of PBP1b in vitro, the mechanism of activation and its physiological relevance have remained unclear. We therefore selected for variants of PBP1b (PBP1b*) that bypass the LpoB requirement for in vivo function, reasoning that they would shed light on LpoB function and its activation mechanism. Several of these PBP1b variants were isolated and displayed elevated polymerization activity in vitro, indicating that the activation of glycan polymer growth is indeed one of the relevant functions of LpoB in vivo. Moreover, the location of amino acid substitutions causing the bypass phenotype on the PBP1b structure support a model in which polymerization activation proceeds via the induction of a conformational change in PBP1b initiated by LpoB binding to its UB2H domain, followed by its transmission to the glycosyl transferase active site. Finally, phenotypic analysis of strains carrying a PBP1b* variant revealed that the PBP1b–LpoB complex is most likely not providing an important physical link between the inner and outer membranes at the division site, as has been previously proposed.


1994 ◽  
Vol 86 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Margaret M. Ramsay ◽  
Fiona Broughton Pipkin ◽  
Peter C. Rubin ◽  
Robert Skidmore

1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure—flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or icepacks. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.


Sign in / Sign up

Export Citation Format

Share Document