scholarly journals Preparation and effects of nano mineral particle feeding in livestock: A review

2015 ◽  
Vol 8 (7) ◽  
pp. 888-891 ◽  
Author(s):  
Partha Sarathi Swain ◽  
D. Rajendran ◽  
S. B. N. Rao ◽  
George Dominic
2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


2015 ◽  
Vol 12 (16) ◽  
pp. 4861-4874 ◽  
Author(s):  
E. M. Stacy ◽  
S. C. Hart ◽  
C. T. Hunsaker ◽  
D. W. Johnson ◽  
A. A. Berhe

Abstract. Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual sediment composition and yield, for water years 2005–2011, from eight catchments in the southern part of the Sierra Nevada, California. Sediment was compared to soil at three different landform positions from the source slopes to determine if there is selective transport of organic matter or different mineral particle size classes. Sediment export varied from 0.4 to 177 kg ha−1, while export of C in sediment was between 0.025 and 4.2 kg C ha−1 and export of N in sediment was between 0.001 and 0.04 kg N ha−1. Sediment yield and composition showed high interannual variation. In our study catchments, erosion laterally mobilized OM-rich litter material and topsoil, some of which enters streams owing to the catchment topography where steep slopes border stream channels. Annual lateral sediment export was positively and strongly correlated with stream discharge, while C and N concentrations were both negatively correlated with stream discharge; hence, C : N ratios were not strongly correlated to sediment yield. Our results suggest that stream discharge, more than sediment source, is a primary factor controlling the magnitude of C and N export from upland forest catchments. The OM-rich nature of eroded sediment raises important questions about the fate of the eroded OM. If a large fraction of the soil organic matter (SOM) eroded from forest ecosystems is lost during transport or after deposition, the contribution of forest ecosystems to the erosion-induced C sink is likely to be small (compared to croplands and grasslands).


2021 ◽  
pp. 1-15
Author(s):  
Hamed Abedini ◽  
Nesrin Ozalp

Abstract Carbon particles can be used as catalyst in solar reactors where they serve as radiant absorbent and nucleation sites for the heterogeneous decomposition reaction. Unlike commonly used metal catalysts, carbon catalyst does not have durability problem and high cost. However, in order to achieve sustainable catalytic decomposition of feedstock over carbon catalysts at elevated temperatures, the surface area of the carbon particles must be maintained. A subsequent treatment of deactivated carbon samples with CO2 at about 1000 °C would increase the surface and would recover the original activity as catalyst. In a windowed solar reactor, carbon particles are directly exposed to the high flux irradiation providing efficient radiation heat transfer directly to the reaction site. Therefore, one of the key parameters to achieve higher conversion efficiencies in a solar reactor is the presence and transport of carbon particles. In this paper, a transient one-dimensional model is presented to describe effect of carbon particle feeding on energy transport and temperature profile of a cavity-type solar receiver. The model was developed by dividing the receiver into several control volumes and formulating energy balance equations for gas phase, particles, and cavity walls within each control volume. Monte Carlo ray tracing (MCRT) method was used to determine the solar heat absorbed by particles and cavity walls, as well as the radiative exchange between particles and cavity walls. Model accuracy was verified by experimental work using a solar receiver where carbon particles were injected uniformly. Comparison of simulation results with the experimentally measured temperatures at three different locations on cavity receiver wall showed an average deviation of 3.81%. The model was then used to study the effect of carbon particle size and feeding rate on the heat transfer, temperature profile, and energy absorption of the solar receiver. Based on the simulation results, it was found that injection of carbon particles with a size bigger than 500 µm has no significant influence on heat transfer of the system. However, by reducing the particle size lower than 500 µm, temperature uniformity and energy absorption were enhanced.


2014 ◽  
Vol 31 (7) ◽  
pp. 1663-1672 ◽  
Author(s):  
Scott J. Richter ◽  
Robert H. Stavn

Abstract A method for estimating multivariate functional relationships between sets of measured oceanographic, meteorological, and other field data is presented. Model II regression is well known for describing functional relationships between two variables. However, there is little accessible guidance for the researcher wishing to apply model II methods to a multivariate system consisting of three or more variables. This paper describes a straightforward method to extend model II regression to the case of three or more variables. The multiple model II procedure is applied to an analysis of the optical spectral scattering coefficient measured in the coastal ocean. The spectral scattering coefficient is regressed against both suspended mineral particle concentration and suspended organic particle concentration. The regression coefficients from this analysis provide adjusted estimates of the mineral particle scattering cross section and the organic particle scattering cross section. Greater accuracy and efficiency of the coefficients from this analysis, compared to semiempirical coefficients, is demonstrated. Examples of multivariate data are presented that have been analyzed by partitioning the variables into arbitrary bivariate models. However, in a true multivariate system with correlated predictors, such as a coupled biogeochemical cycle, these bivariate analyses yield incorrect coefficient estimates and may result in large unexplained variance. Employing instead a multivariate model II analysis can alleviate these problems and may be a better choice in these situations.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4688
Author(s):  
Grzegorz Jozefaciuk ◽  
Kamil Skic ◽  
Agnieszka Adamczuk ◽  
Patrycja Boguta ◽  
Krzysztof Lamorski

Structure and strength are responsible for soil physical properties. This paper determines in a uniaxial compression test the strength of artificial soils containing different proportions of various clay-size minerals (cementing agents) and silt-size feldspar/quartz (skeletal particles). A novel empirical model relating the maximum stress and the Young’s modulus to the mineral content basing on the Langmuir-type curve was proposed. By using mercury intrusion porosimetry (MIP), bulk density (BD), and scanning electron microscopy (SEM), structural parameters influencing the strength of the soils were estimated and related to mechanical parameters. Size and shape of particles are considered as primary factors responsible for soil strength. In our experiments, the soil strength depended primarily on the location of fine particles in respect to silt grains and then, on a mineral particle size. The surface fractal dimension of mineral particles played a role of a shape parameter governing soil strength. Soils containing minerals of higher surface fractal dimensions (rougher surfaces) were more mechanically resistant. The two latter findings appear to be recognized herein for the first time.


2021 ◽  
Author(s):  
Steffen A. Schweizer ◽  
Emanuele Lugato ◽  
Carmen Höschen ◽  
Ingrid Kögel-Knabner

&lt;p&gt;&lt;span&gt;Agricultural sandy soils with high organic matter (OM) contents are generally unexpected under the current paradigm of organic matter formation and stabilization. These so-called black sand soils occur in North-Western Europe and have been related to historical heathland vegetation. The properties and mechanisms of the high OM sequestration in these soils are not clear as they exceed common observations of OM stored in coarse-textured soils. In this study, we analyzed a subset of samples with &amp;#8216;black sand&amp;#8217; properties from the European soil database &amp;#8220;Land Use/Cover Area frame statistical Survey&amp;#8221; (LUCAS). Through particle size fractionation, we isolated the fine fraction &lt;20&amp;#160;&amp;#181;m which contained, on average, 55&amp;#160;% of the total soil organic carbon (OC), in only 8&amp;#160;% of the corresponding soil mass. The fine fraction &lt;20&amp;#160;&amp;#181;m contained 301&amp;#160;mg&amp;#160;OC g&lt;sup&gt;-1&lt;/sup&gt; with a C:N ratio of 17.4 on average and was positively correlated with the bulk soil OC. The characterization of OM composition in the fine fractions by solid-state &lt;sup&gt;13&lt;/sup&gt;C nuclear magnetic resonance (NMR) spectroscopy revealed that the share of alkyl C increased with OC concentrations whereas O/N-alkyl C decreased. To analyze the distribution of OM at the microscale, we analyzed five samples from the &lt;20&amp;#160;&amp;#181;m fraction containing a gradient of 245-378&amp;#160;mg&amp;#160;OC g&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; with nanoscale secondary ion mass spectrometry (NanoSIMS) at a spatial resolution of 120&amp;#160;nm. These microscale measurements revealed fine mineral particle structures associated with heterogeneously distributed OM. Using image analysis, we found that the proportion of OM-dominated area (indicated by &lt;sup&gt;12&lt;/sup&gt;C&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; and &lt;sup&gt;26&lt;/sup&gt;CN&lt;sup&gt;-&lt;/sup&gt;) increased from 52 to 80&amp;#160;% on average with increasing OC concentration of the fine fractions. A majority of OM-dominated area was correlated with higher &lt;sup&gt;42&lt;/sup&gt;AlO&lt;sup&gt;-&lt;/sup&gt; counts, which might suggest a preferential co-localization. In turn, the particle area which was dominated by minerals (indicated by &lt;sup&gt;16&lt;/sup&gt;O&lt;sup&gt;&amp;#8209;&lt;/sup&gt;, &lt;sup&gt;28&lt;/sup&gt;Si&lt;sup&gt;&amp;#8209;&lt;/sup&gt;, &lt;sup&gt;42&lt;/sup&gt;AlO&lt;sup&gt;&amp;#8209;&lt;/sup&gt; and &lt;sup&gt;72&lt;/sup&gt;FeO&lt;sup&gt;&amp;#8209;&lt;/sup&gt;) contained less Al and more Si. This shows that the more alkylated and OM-rich fine fractions are related with distinct patterns of organo-mineral structures at the microscale.&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document