scholarly journals Parasitological and molecular characterization of the avian schistosomatid cercariae infecting lymnaeidae snails in Phayao, Northern Thailand

2021 ◽  
pp. 2655-2661
Author(s):  
Ornampai Japa ◽  
Chittakun Suwancharoen ◽  
Thanakon Bunsong ◽  
Chorpaka Phuangsri

Background and Aim: Cercarial dermatitis or swimmer's itch is an allergic skin reaction caused by penetrating cercaria of animal blood flukes. It is considered as a zoonotic water-borne skin condition that is found globally. Among the schistosomatid trematodes, avian schistosomes are the most responsible for cercarial dermatitis. Very little is known regarding the occurrence of dermatitis-causing cercariae in Thailand. Therefore, the objective of this study was to preliminarily investigate the presence of larval blood fluke infection among local lymnaeidae snails in Phayao by the incorporation of morphological and molecular methods. Materials and Methods: Overall 500 Radix (Lymnaea) rubiginosa (Michelin, 1831) were collected from freshwater reservoirs near Phayao Lake in San Kwan village in Phayao, Thailand, from October to December 2020. The snails were examined for avian blood fluke infection by the cercarial shedding technique followed by morphological and molecular characterization. Results: Only one type of furcocercous cercaria was observed to emerge from six infected snails (1.2%). Our molecular analyses demonstrated that the emerging cercariae showed most similarity to either the 28S ribosomal RNA gene (28S rDNA) or cytochrome oxidase C subunit 1 gene (cox1 or COI) sequences to those of Trichobilharzia species. In addition, phylogenetic tree analyses of both loci revealed similar results; the emerging cercariae were consistently clustered together with Trichobilharzia regenti. Conclusion: Our results clearly confirmed that the detected furcocercous cercariae belonged to the genus Trichobilharzia and displayed the highest homology to T. regenti. This study provides important data on the occurrence of dermatitis causing cercariae infection among local lymnaeidae snails, encouraging effective management, and control measures for this zoonotic infectious disease.

Zootaxa ◽  
2013 ◽  
Vol 3608 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Chris J. LAW ◽  
KELLY M. DORGAN ◽  
GREG W. ROUSE

Thoracophelia (Annelida, Opheliidae) are burrowing deposit feeders generally found in the mid- to upper intertidal areas of sandy beaches. Thoracophelia mucronata (Treadwell, 1914) is found along the west coast of North America, including at Dillon Beach, CA. Two additional species, Thoracophelia dillonensis (Hartman, 1938) and T. williamsi (Hartman, 1938) were also described from this beach. These three sympatric species have been primarily distinguished by branchial morphology, and efforts to determine the validity of the species have been based on morphological, reproductive and ecological studies. Here we demonstrate using mitochondrial and nuclear DNA sequence data that these three species are valid. Mitochondrial Cytochrome c subunit 1 (COI) sequences show uncorrected interspecific distances of ~9–13%. We found no inter—specific differences in body color or in hemoglobin concentration, but found that reproductive males were pinkish-red in color and had lower hemoglobin concentrations than purplish—red reproductive females.


2015 ◽  
Vol 90 (6) ◽  
pp. 693-697 ◽  
Author(s):  
L.S. Gasques ◽  
R.J. Graça ◽  
S.M.A.P. Prioli ◽  
R.M. Takemoto ◽  
A.J. Prioli

AbstractUrocleidoides ectoparasites are mainly found on fish of the neotropical regions. Although molecular research on monogeneans is available, no genetic data exist characterizing species in the Urocleidoides genus. Some DNA sequences have been efficacious in systematic studies and in the reconstruction of phylogenies of fish parasites. Relevant roles have been given to the sequence of the mitochondrial gene of cytochrome c oxidase I (COI). This study characterized COI sequences of the parasites Urocleidoides malabaricusi and U. cuiabai in trahira fish Hoplias aff. malabaricus of the flood plain of the Upper River Paraná, Brazil. The two species under analysis were distinguished by sequencing and analysing a 420-bp fragment of the COI gene, which suggested the existence of the cryptic species U. malabaricusi.


2020 ◽  
Vol 11 (3) ◽  
pp. 022-033
Author(s):  
Chowdhury Md. Estiak Khan ◽  
Chaity Arnaba Saha ◽  
Khan Alam ◽  
Ferdouse Khandker Jannatul ◽  
Islam Md. Asadul ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Jia Jie Woon ◽  
Cindy Shuan Ju Teh ◽  
Chun Wie Chong ◽  
Kartini Abdul Jabar ◽  
Sasheela Ponnampalavanar ◽  
...  

The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) has now become a global sentinel event. CRAB infections often instigate severe clinical complications and are potentially fatal, especially for debilitated patients. The present study aimed to conduct molecular characterization on CRAB isolated from patients in the intensive care unit from 2015 to 2016 and determine the risk factors associated with patients’ mortality. One hundred CRAB isolates were retrospectively selected and included in this study. Antimicrobial susceptibility testing showed that all isolates remained susceptible to colistin, even though 62% of them conferred resistance to all other classes of antibiotics tested. OXA carbapenemase gene was found to be the predominant carbapenemase gene, with 99% of the isolates coharbouring blaOXA-23-like and blaOXA-51-like carbapenemase genes. All isolates were carrying intact CarO genes, with the presence of various degree of nucleotide insertion, deletion and substitution. Overall, PFGE subtyped the isolates into 13 distinct pulsotypes, with the presence of 2 predominant pulsotypes. Univariate analysis implied that age, infection/colonization by CRAB, ethnicity, comorbidity and CRAB specimen source were significantly associated with in-hospital mortality. Multivariate analysis identified a higher risk of mortality for patients who are of Chinese ethnicity with diabetes as an underlying disease. As CRAB infection could lead to high rate of mortality, comprehensive infection control measures are needed to minimize the spread of this pathogen.


2017 ◽  
Vol 52 (4) ◽  
pp. 191-197 ◽  
Author(s):  
Yutaka Fukuda ◽  
Kazuyoshi Miyamura ◽  
Etsuhisa Hitaka ◽  
Keisuke Kimoto ◽  
Yasuhiro Sanada ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 849
Author(s):  
Fabiola A. Sepúlveda ◽  
Luis A. Ñacari ◽  
Maria Teresa González

Blood flukes are digeneans that infect wild and farmed fish that can cause a severe and potentially lethal disease in farmed fish. These parasites are undetectable in the larval stage based on macroscopic observations in the definitive host with the infection becoming evident when eggs accumulate in the branchial vessels. There are nine known species of the genus Paradeontacylix and seven exclusively parasitize Seriola spp. from several geographical areas. Seriola lalandi aquaculture farms are emerging at various localities in northern Chile. Here, we report, for the first time, two blood fluke species parasitizing S. lalandi in the Southeastern Pacific (Chile). In the laboratory, the gills and heart of fish were removed. The retained blood flukes were separated according to the infection site, fixed in 70% or 95% ethanol for taxonomic and molecular analysis, respectively. Morphometrical differences among the fluke species were evaluated with a principal component analysis (PCA) using proportional body measurements. Phylogenetic trees were constructed based on 28S rDNA, cox1 mDNA using Bayesian inference (BI), and maximum likelihood (ML). Based on morphology, morphometry, and molecular analyses, two new species are proposed: P. humboldti n. sp. from the gills and P. olivai n. sp. from the heart of S. lalandi. Both were clearly distinguished from other species of Paradeontacylix by a combination of morphologic features (posterior tegumental spines, testes arrangement, body size). The genetic distance (based on cox1) among species was >10%. P. humboldti n. sp. and P. olivai n. sp. are sister species (with a common ancestor) independent of P. godfreyi from S. lalandi in Australia. The newly identified parasites may pose a risk to farmed S. lalandi as aporocotylids have been the cause of diseases in farmed fish from other geographical areas. In addition, some cages of S. lalandi are currently maintained in an open circulating system, which could favor the transmission of these parasites (if involved hosts are present in the environment).


2007 ◽  
Vol 42 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Kazuo Ogawa ◽  
Taizo Nagano ◽  
Noriko Akai ◽  
Akihiro Sugita ◽  
Kathryn A. Hall

Aquaculture ◽  
2012 ◽  
Vol 326-329 ◽  
pp. 15-19 ◽  
Author(s):  
Sho Shirakashi ◽  
Melanie Andrews ◽  
Yoshiki Kishimoto ◽  
Katsuya Ishimaru ◽  
Takahiko Okada ◽  
...  

2021 ◽  
Author(s):  
Rene Dembele ◽  
Wendpoulomdé A.D. Kaboré ◽  
Issiaka Soulama ◽  
Oumar Traoré ◽  
Nafissatou Ouédraogo ◽  
...  

Abstract Background The aim of this study was to determine the resistance of diarrheagenic Escherichia coli strains to β-lactams antibiotics and to perform the molecular characterization of Extended Spectrum β-lactamases (ESBL) and integrons genes. Methods This study was carried out from August 2013 to October 2015 and involved 31 DEC strains isolated from diarrheal stools samples collected from children less than five years of age. The identification and characterization of DEC strains was done through the standard biochemical tests those were confirmed using API 20E and Polymerase Chain Reaction (PCR). The determination of antimicrobial resistance was realized by the disk diffusion method then an amplification of the β-lactamase resistance genes and integrons by PCR was done. Results Out of the 419 E. coli strains identified, 31 isolates (7.4%) harbored the DEC virulence genes. From these DEC, 21 (67.7%) were ESBL-producing E. coli. Susceptibility to ESBL-producing E. coli showed that the majority of isolates were highly resistant to amoxicillin (77.4%), amoxicillin clavulanic acid (77.4%) and piperacillin (64.5%). The following antibiotic resistance genes and integron were identified from the 31 DEC isolates: blaTEM (6.5%), blaSHV (19.4%), blaOXA (38.7%) blaCTX−M (9.7%), Int1 (58.1%) and Int3 (19.4%). No class 2 integrons (Int2) was characterized. Conclusions Because of the high prevalence of multidrug-resistant ESBL organisms found in this study among pediatric patients, there is a need of stringent pediatric infection control measures.


Sign in / Sign up

Export Citation Format

Share Document