scholarly journals SYNTHESIS AND CHARACTERIZATION OF NICKEL HYDROXIDE FROM EXTRACTION SOLUTION OF SPENT CATALYST

Metalurgi ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 111
Author(s):  
Kevin Cleary Wanta ◽  
Felisha Hapsari Tanujaya ◽  
Federick Dwi Putra ◽  
Ratna Frida Susanti ◽  
Gelar Panji Gemilar ◽  
...  

Nickel is an essential metal element and is applied in various sectors. One of the useful nickel–based derivatives products is nickel hydroxide [Ni(OH)2]. This compound is widely applied as raw material for electrodes of rechargeable batteries, capacitors, electrolyzers, and catalysts. This study focuses on the synthesis of Ni(OH)2 using the hydroxide precipitation method. A solution from the extraction process of spent catalysts was used as a precursor solution. After the precursor solution was obtained, the precipitation process was carried out at pH 10, where the operating temperature was varied at 30–60oC. NaOH, KOH, and MgO solutions were used as precipitating agents. The experimental results show that the Ni(OH)2 compounds were produced optimally at low temperatures, 30oC. It could be indicated from the lowest concentration of Ni2+ ions in the liquid phase that reached that temperature. The three precipitation agents also gave good results in the precipitation of Ni2+ ions, where almost all of the Ni2+ ions were precipitated from the liquid phase. The precipitated products were characterized using SEM, XRD, and XRF. The analysis results showed that the product was agglomerated and formless. The purity of the precipitates formed were 24.1 and 29% for the precipitating agents MgO and NaOH, respectively.

2019 ◽  
Vol 967 ◽  
pp. 259-266 ◽  
Author(s):  
Muhammad Rizal Fahlepy ◽  
Yuyu Wahyuni ◽  
Muhamma Andhika ◽  
Arini Tiwow Vistarani ◽  
Subaer

This research is about nanoparticles hematite (NPH) synthesized and characterized from natural iron sands using co-precipitation method and its potential applications as extrinsic semiconductor materials type-N. The aims of this study is to determine the process parameters to obtain hematite of high purity degree and to observe its physical characteristics as an extrinsic semiconductor materials type-N. The iron sand was first separated by magnetic technique and then dissolved into HCl solution before conducting the precipitation process. Precipitation was done by dripping ammonium hydroxide (NH4OH). Precipitated powder was dried at 80°C for 2 hours, and then calcined at 500°C, 600°C 700°C for 2 hours respectively. The composition of iron sands, purity degree, hematite mineral grain size, and space group were analyzed by XRF, XRD, FTIR and SEM. The XRF analysis result of raw material, showed that dominant element and composition in the sample is Fe with purity degree is 90.51%. The XRD result before and after precipitation showed Fe3O4 and α-Fe2O3. Fe3O4 purity degree was obtained 85%, and α-Fe2O3 in NPH500, NPH600, NPH700 were 63%, 83%, and 76%, respectively. FTIR spectral showed crystalline hematite characteristics stong band of 472.07 to 559.62 cm-1. SEM image showed the morphology of agglomeration particulates, when the calcinaton temperature increases, the agglomeration will be seperated due to thermal energy. Based on the charaterization results it was found that the natural iron sand synthesized has the potential to be applied as an N-type extrinsic semiconductor material.


2020 ◽  
Vol 17 (7) ◽  
pp. 479
Author(s):  
Dongqin Tan ◽  
Jing Jin ◽  
Cuicui Guo ◽  
Dhanjai ◽  
Jiping Chen

Environmental contextRemediation of wastewater containing polycyclic aromatic hydrocarbons and metals is essential to limit adverse effects on the environment and human health. Using a simple precipitation method, we prepared porous magnetic MgO hybrids for use as a material for removing pollutants from wastewater. The material showed excellent removal performance for 12 polycyclic aromatic hydrocarbons and cadmium ions, and thus has potential applications in wastewater treatment. AbstractHierarchical porous magnetic MgO hybrids (Fe3O4/MgO) are controllably synthesised based on a facile precipitation process. The resulting material displays a three-dimensional architecture with nest-like morphology, large surface area (135.2m2 g−1) and uniform mesochannels (5–35nm). The adsorption equilibrium data of target polycyclic aromatic hydrocarbons (PAHs) on Fe3O4/MgO sorbents are described by the Langmuir isotherm model. The composites show a strong tendency for the removal of PAHs owing to their porous structure that possesses an excellent affinity for PAHs. Under the optimal conditions, a removal of more than 70% is achieved for 12 PAHs. The materials also exhibit a good removal ability of cadmium (Cd2+) from water with fast adsorption (<5min) and high removal percentage (>80%). Moreover, the composites possess sufficient magnetism for separation. To demonstrate the performance of the sorbents, Fe3O4/MgO is exposed to aqueous samples spiked with low concentrations of PAHs and Cd2+. In almost all cases, the composites are superior to the commercially available sorbents as well as un-functionalised Fe3O4 nanoparticles. Therefore, this work provides a promising approach for the simultaneous removal of PAHs and Cd2+ from water using multifunctional MgO microspheres.


2020 ◽  
Vol 12 (2) ◽  
pp. 37-42
Author(s):  
Andia Fatmaliana ◽  
Maulinda Maulinda ◽  
Nirmala Sari

Indonesia is a country that has enormous iron ore and iron sand mine that can be utilized for various industrial purposes. This research has been successfully conducted synthesis and characterization of hematite iron ore and magnetite from iron sand. Iron sand and iron ore that has been crushed manually repaired with a magnet was carried out with the HCl, and NH4OH then dried in the temperature of 150 oC and calcinated at a temperature of 500 oC. Characterization was carried out using X-ray diffraction (XRD) and X-ray fluorescence (XRF), where the preliminary information obtained from XRF results in an iron ore sample by manual separation have 95.99% of Fe2O3 and followed by compounds SiO2 (2.10%). While the iron sand contains 81.42% of Fe3O4 and 2.5% of SiO2. After the precipitation process, Fe2O3 compounds contained in iron ore has a content of 96.58% and Fe3O4 compounds contained in iron sand (86.73%).  The results of XRD indicate the dominant primary phase in iron ore is hematite or Fe2O3, and in iron, sand is magnetite Fe3O4, Before the extraction process, Fe2O3 was 58.009 μm in size and after the process of extracting the particles was reduced to 20.950 μm. While the Fe3O4, prior to the extract, has a grain size of 59.009 μm, and after an extraction process, the grain size reduced into 25.950 μm. The calculation results indicate there is a slight size difference between the grain size of iron sand and iron ore.


Author(s):  
Byron Patricio Pérez Simba ◽  
Javier Alberto Garrido Espinosa ◽  
Andrea Belén Endara Vargas ◽  
Andrea Carolina Landázuri Flores ◽  
Lucía de los Ángeles Ramírez Cárdenas

This study aimed to determine the best extraction and precipitation conditions of Moringa oleifera Lam. leaf protein. The influence of pH (10, 11, 12) and the concentration of NaCl (0, 0.25, 0.5) for the protein extraction process were studied through a Completely Randomized Design (CRD) with factorial arrange 32. The combination of pH 11 and 12 with 0 M NaCl had the best yield (P<0.05). The treatment of pH 11 without NaCl followed a precipitation stage for its purification, and the effect of different levels of pH (4, 4.5, 5) and temperature (40, 60, 80 °C) were evaluated using a CRD with factorial arrange 22 and 6 central points. The temperature did not affect the yield of the process in a significant way and the amount of precipitate was maximized at pH 4 and 4.5. From 100 g of the dry leaf, 7.26±0.19 g of protein was isolated with a recovery of 26.93±0.22 g 100 g-1 from the total protein. Due to their astringency and bitterness, consuming large amounts of Moringa oleifera Lam leaves is not a solution; therefore, obtaining a leaf proteinconcentrate could be useful for diverse applications in nutritional supplements, and as raw material for functional products development.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 284 ◽  
Author(s):  
Mi Byun ◽  
Ji Kim ◽  
Jae Baek ◽  
Dae-Won Park ◽  
Man Lee

Succinic acid (SA) is a valuable raw material obtained by hydrogenation of maleic acid (MA). The product selectivity of this reaction is highly dependent on the reaction conditions. This study therefore investigated the effect of the reaction temperature, hydrogen pressure, and reaction time on the liquid-phase hydrogenation of MA by a Pd/Al2O3 catalyst. Complete conversion of MA and 100% selectivity for SA were achieved at a temperature of 90 °C, H2 pressure of 5 bar, and reaction time of 90 min. Fumaric acid (FA) was formed as an intermediate material by hydrogenation of MA under nonoptimal conditions. The impact of the percentage of Pd dispersion and phase of the Al2O3 support (γ, θ + α, and α) was also examined. The Pd/Al2O3 catalyst with 29.8% dispersion of Pd and γ phase of Al2O3 exhibited the best catalytic performance. Thus, catalytic activity depends not only on the amount of Pd dispersion but also on the physicochemical properties of Al2O3.


2014 ◽  
Vol 887-888 ◽  
pp. 762-765
Author(s):  
Hong Kai Zhao ◽  
Hong Li Wang

In the modern world, the theme of low carbon economic development trend advocates energy conservation and discharge reduction, and the energy-saving technology of thermal insulation film of automobile glass and construction glass has attracted increasing more attention. This paper adopts liquid phase precipitation process to prepare nanoSnO2 polyacrylate thermal insulation organic film: first, select precursor solution concentration in favor of generating outphase precipitation and pH value to prepare SnCl4 solution with low concentration 2 mM-10 mM, and hydrochloric acid with concentration 0.1 M-0.4 M; select methyl methacrylate 34.5%-90%, BA 10%-35.5%, MAA 0%-30% and AIBN 0.1%-0.3% to prepare polyacrylate film; put the prepared PA film in SnCl solution, control reaction temperature to be 40°C-80°C, maintain reaction time 6-18h, take out the film, wash and dry to get nanoSnO2organic thermal insulation film. According to XRD analysis and SEM observation, SnO2 is uniformly deposited on the surface of organic film, having good thermal insulation performance.


Author(s):  
Aslina Br. Ginting ◽  
Dian Anggraini

METODE PENGENDAPAN DAN PENUKAR KATION PADA PROSES PEMISAHAN CESIUM DALAM BAHAN BAKAR U3Si2-Al. Isotop 137Cs salah satu hasil fisi yang dapat digunakan sebagai monitor burn up untuk mempelajari kinerja bahan bakar selama iradiasi dalam reaktor. Untuk menganalisis isotop 137Cs dalam pelat elemen bakar (PEB) U3Si2-Al pasca iradiasi diperlukan metode yang valid agar diperoleh data yang akurat. Beberapa metode dapat digunakan untuk pemisahan 137Cs dalam PEB U3Si2-Al, antara lain adalah metode pengendapan dalam bentuk garam CsClO4 sesuai dengan ASTM E 320-79 dan metode penukar kation menggunakan zeolit Lampung. Proses pengendapan dilakukan dengan menggunakan serbuk CsNO3 sebagai senyawa pembawa (carier) dan pereaksi HClO4, sedangkan proses penukar kation dilakukan dengan penambahan zeolit Lampung. Tujuan penelitian adalah mendapatkan metode valid untuk pemisahan 137Cs dalam PEB U3Si2-Al pasca iradiasi, khususnya aspek pengaruh berat serbuk CsNO3 dan berat zeolit Lampung yang ditambahkan. Proses pengendapan isotop 137Cs dilakukan dengan memipet larutan PEB U3Si2-Al sebanyak 150 µL kemudian ditambahkan serbuk CsNO3 dengan variasi berat 500; 625; 700 ; dan 1000 mg serta 4 mL HClO4 dalam pengangas es selama 1 jam. Hasil proses pengendapan diperoleh endapan 137CsClO4yang terpisah dengan supernatan sebagai fasa cair.Sementara itu, proses penukar kation dilakukan dengan menambahkan zeolit Lampung variasi berat 700; 900; 1000 ; dan 1200 mg dengan pengadukan selama 1 jam. Hasil proses penukar kation diperoleh padatan 137Cs-zeolit dalam fasa padat dan isotop lainnya dalam fasa cair. Endapan 137CsClO4 dan padatan137Cs-zeolit serta supernatan diukur kandungan 137Cs menggunakan spektrometer-g. Hasil analisis menunjukkan bahwa berat CsNO3 yang paling banyak mengikat 137Cs terjadi pada penambahan CsNO3 seberat 700 mg yaitu sebesar 0,0472 µg, sedangkan penambahan zeolit Lampung yang optimal diperoleh pada berat 1000 mg hingga 1200 mg dengan kandungan isotop 137Cs dalam padatan 137Cs-zeolit diperoleh sebesar 0,0557 µg. Pemisahan isotop 137Cs menggunakan metode penukar kation dengan penambahan zeolit Lampung 1000 mg hingga 1200 mg mempunyai hasil lebih baik bila dibandingkan dengan metode pengendapan. Selain itu, pengerjaan dengan metode penukar kation lebih mudah serta lebih aman bila dibandingkan dengan metode pengendapan yang pengerjaannya harus dalam penggangas es (-4 ºC), menggunakan bahan kimia HClO4 dengan aceton dan etanol yang bersifat volatil dan eksotermik.Kata kunci: isotop 137Cs, zeolit, serbuk CsNO3, metode penukar kation dan pengendapan. PRECIPITATION METHOD AND KATION EXCHANGE METHOD FOR CESIUM SEPARATION OF U3Si2-Al FUEL ELEMENT. 137Cs isotope was one of the fission products which could be used as a burn up monitor to study the performance of the fuel during irradiation in a reactor. For analyzed 137Cs isotope in post-irradiation U3Si2-Al fuel element plate (PEB), it was needed a valid method to obtain accurate data. Several methods could be used for 137Cs separation from U3Si2-Al PEB solution were precipitation method in CsClO4 salt form according to ASTM E 320-79 and cation exchange method using Lampung zeolite. The precipitation process was done using CsNO3 powder as a carrier substance and HClO4 reagent, while the cation exchange process was done by the addition of Lampung zeolite. The objective research was getting a valid method for 137Cs separation in post-irradiation U3Si2-Al PEB, especially for the aspects of CsNO3 powder weight influence and weight of zeolite Lampung was added. 137Cs isotope precipitation process was done by pipetting 150 mL U3Si2-Al PEB solution which was added to the 500; 625; 700; and 1000 mg weight variation CsNO3 powder and 4 mL HClO4 in ice media for 1 hour. The precipitation process results was obtained CsClO4 precipitate separated from the supernatant as a liquid phase. Mean while, the cation exchange process was done by adding 700; 900; 1000 and 1200 mg weight variation Lampung zeolite by shaking for 1 hour. The cation exchange process results was obtained 137Cs-zeolite in the solid phase and the other isotopes in the liquid phase. The137Cs content in 137CsClO4 precipitate,137Cs-zeolite solid phase and supernatant was measured using spectrometre-g. The analysis showed that the optimum weight of CsNO3 addition when most binding of 137Cs occurred was 700 mg equal to 0.0472 g 137Cs isotope, while the optimum weight addition of Lampung zeolite was 1000 mg until 1200 mg equal to 137Cs isotope content in137Cs-zeolite obtained was 0.0557 g. The 137Cs isotope separation process using both methods could be concluded that the cation exchange method using zeolite by the addition of 1000 mg Lampung zeolite until 1200 mg had better result than the precipitation method. The other advantages of this method were easier and saver than precipitation methods that the process should be in ice batch (-4oC), using chemicals HClO4, acetone and ethanol which had volatile and exothermic character.Keywords: 137Cs isotope, zeolite, CsNO3 powder, cation exchange and precipitation method.


2021 ◽  
Vol 15 (2) ◽  
pp. 217
Author(s):  
Kevin Cleary Wanta ◽  
Stephen Lim ◽  
Ratna Frida Susanti ◽  
Gelar Panji Gemilar ◽  
Widi Astuti ◽  
...  

Nickel hydroxide has a vital role in various applications, especially as a support material for energy storage materials. Nickel hydroxide can be synthesized through the hydroxide precipitation method. However, the product formed by this method may be large or more than 100 nm because the agglomeration step can occur easily. This present work aims to study the effect of surfactant types in the synthesis and characterization of nickel hydroxide nanoparticle. Nickel sulfate (NiSO4) solution was used as a precursor solution, while 5M sodium hydroxide (NaOH) solution was used as a precipitation agent. The surfactants studied were alkyl benzene sulfonate (ABS), sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyvinylpyrrolidone (PVP). The nickel hydroxide synthesis process was carried out at 50 oC for 1 hour. The surfactant concentration used was at the critical micelle concentration (CMC), where the CMC for ABS, SDS, CTAB, and PVP were 0.01; 0.05; 3; and 0.5 %w/v, respectively. The synthesis of nickel hydroxide nanoparticle was carried out successfully precipitated almost 100% of Ni2+ ions. The product characterization that has been carried out shows that ABS surfactant produces the best nickel hydroxide nanoparticle product where the particle size is 3.12–4.47 nm.


2019 ◽  
Vol 13 (2) ◽  
pp. 94
Author(s):  
Kevin Cleary Wanta ◽  
Federick Dwi Putra ◽  
Ratna Frida Susanti ◽  
Gelar Panji Gemilar ◽  
Widi Astuti ◽  
...  

A B S T R A C TNickel hydroxide [Ni(OH)2] is an important compound in producing rechargeable batteries. The synthesis of Ni(OH)2 can be carried out using a hydroxide precipitation method from a solution containing nickel (II) (Ni2+) ions. In this study, the synthesis of Ni(OH)2 was investigated from the solution of extracted spent catalyst using sulfuric acid (H2SO4) solution. The selective precipitation was conducted using sodium hydroxide (NaOH) solution and the degree of acidity (pH) was varied in the range of 4–14. The operating temperature was kept constant at 30oC. The experimental results showed that the optimum precipitation conditions of Al3+ and Ni2+ ions were obtained at different pH where the optimum pH values were 6 and 10, respectively. Precipitate samples were characterized and the results showed that the purity of Ni(OH)2 in those samples was 13.1%. The XRD results indicated that the structure of precipitate still contains other impurities, such as Na2SO4, Al(OH)3 and those compounds were mutually agglomerate.A B S T R A KNikel hidroksida [Ni(OH)2] merupakan senyawa penting dalam produksi baterai yang dapat didaur ulang. Sintesis senyawa Ni(OH)2 dapat dilakukan melalui metode presipitasi hidroksida dari suatu larutan yang mengandung ion nikel (II) (Ni2+). Pada studi ini, sintesis Ni(OH)2 dilakukan dari larutan induk hasil ekstraksi spent catalyst dengan menggunakan larutan asam sulfat (H2SO4). Proses presipitasi selektif dilakukan dengan menggunakan larutan natrium hidroksida (NaOH) dan derajat keasaman (pH) divariasikan pada kisaran 4 hingga 14. Temperatur operasi dijaga konstan pada 30 oC. Hasil percobaan menunjukkan bahwa proses presipitasi ion Al3+ dan ion Ni2+ mencapai keadaan optimum pada pH yang berbeda dengan nilai pH optimumnya adalah 6 dan 10, secara berurutan. Hasil karakterisasi sampel menunjukkan bahwa kemurnian Ni(OH)2 dalam sampel sebesar 13,1%. Hasil pengujian XRD mengindikasikan bahwa struktur presipitat yang terbentuk masih mengandung senyawa pengotor lain, seperti senyawa Na2SO4, Al(OH)3 dan senyawa–senyawa tersebut saling mengaglomerasi. 


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


Sign in / Sign up

Export Citation Format

Share Document