scholarly journals Effect of Surfactant Type on Synthesis and Characteristics of Nanonickel Hydroxide

2021 ◽  
Vol 15 (2) ◽  
pp. 217
Author(s):  
Kevin Cleary Wanta ◽  
Stephen Lim ◽  
Ratna Frida Susanti ◽  
Gelar Panji Gemilar ◽  
Widi Astuti ◽  
...  

Nickel hydroxide has a vital role in various applications, especially as a support material for energy storage materials. Nickel hydroxide can be synthesized through the hydroxide precipitation method. However, the product formed by this method may be large or more than 100 nm because the agglomeration step can occur easily. This present work aims to study the effect of surfactant types in the synthesis and characterization of nickel hydroxide nanoparticle. Nickel sulfate (NiSO4) solution was used as a precursor solution, while 5M sodium hydroxide (NaOH) solution was used as a precipitation agent. The surfactants studied were alkyl benzene sulfonate (ABS), sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyvinylpyrrolidone (PVP). The nickel hydroxide synthesis process was carried out at 50 oC for 1 hour. The surfactant concentration used was at the critical micelle concentration (CMC), where the CMC for ABS, SDS, CTAB, and PVP were 0.01; 0.05; 3; and 0.5 %w/v, respectively. The synthesis of nickel hydroxide nanoparticle was carried out successfully precipitated almost 100% of Ni2+ ions. The product characterization that has been carried out shows that ABS surfactant produces the best nickel hydroxide nanoparticle product where the particle size is 3.12–4.47 nm.

2021 ◽  
Vol 02 (01) ◽  
Author(s):  
Mohamad Alif Hakimi Hamdan ◽  
◽  
Nur Hanis Hayati Hairom ◽  
Nurhafisza Zaiton ◽  
Zawati Harun ◽  
...  

Thiophene is one of the sulfur compounds in the petroleum fraction that can be harmful to living things and lead to a critical effect on the ecosystem. Photocatalytic degradation is one of the promising methods in treating wastewater as it can mineralization of pollutants into carbon dioxide and water. Other than that, this method is non-toxic and relatively low cost. The production of hydroxyl radicals playing a vital role in the degradation of organic pollutants. It has been claimed that the usage of zinc oxide (ZnO) nanoparticles could give an excellent degradation process as this photocatalyst have high photosensitivity, low cost and chemically stable. However, the preparation method of ZnO nanoparticles will affect the agglomeration, particle size, shape and morphology of particles and lead to influence the photocatalytic activity in degrading thiophene. Therefore, this study focused on the effectiveness of ZnO nanoparticles in the presence of fibrous nanosilica (KCC-1) and polyethylene glycol (PEG) as the capping agent to degrade synthetic thiophene. ZnO/KCC-1 had been synthesized via the precipitation method and characterized by using Fourier Transform Infrared (FTIR). The chemical bond and nature of the photocatalyst from the FTIR results proved that the synthesis process to produce the ZnO/KCC-1 was succeed. The large surface area of KCC-1 increases the effectiveness of ZnO which is supported by the experimental data. Accordingly, the optimum condition for photocatalytic degradation of thiophene is under pH 7 by using ZnO/KCC-1 as photocatalyst. Hence, it is believed that this research could be implemented to remove the thiophene in petroleum fraction from the actual industrial effluents and this can preserve nature in the future.


Metalurgi ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 111
Author(s):  
Kevin Cleary Wanta ◽  
Felisha Hapsari Tanujaya ◽  
Federick Dwi Putra ◽  
Ratna Frida Susanti ◽  
Gelar Panji Gemilar ◽  
...  

Nickel is an essential metal element and is applied in various sectors. One of the useful nickel–based derivatives products is nickel hydroxide [Ni(OH)2]. This compound is widely applied as raw material for electrodes of rechargeable batteries, capacitors, electrolyzers, and catalysts. This study focuses on the synthesis of Ni(OH)2 using the hydroxide precipitation method. A solution from the extraction process of spent catalysts was used as a precursor solution. After the precursor solution was obtained, the precipitation process was carried out at pH 10, where the operating temperature was varied at 30–60oC. NaOH, KOH, and MgO solutions were used as precipitating agents. The experimental results show that the Ni(OH)2 compounds were produced optimally at low temperatures, 30oC. It could be indicated from the lowest concentration of Ni2+ ions in the liquid phase that reached that temperature. The three precipitation agents also gave good results in the precipitation of Ni2+ ions, where almost all of the Ni2+ ions were precipitated from the liquid phase. The precipitated products were characterized using SEM, XRD, and XRF. The analysis results showed that the product was agglomerated and formless. The purity of the precipitates formed were 24.1 and 29% for the precipitating agents MgO and NaOH, respectively.


BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 1-9
Author(s):  
Arun Bhujel ◽  
Bibek Sapkota ◽  
Ram Lochan Aryal ◽  
Bhoj Raj Poudel ◽  
Sitaram Bhattarai ◽  
...  

Zirconia (ZrO2), an inorganic material, is a very fascinating material due to its high mechanical strength and fracture toughness. The synthesis is carried out by using co-precipitation method using optimum content of zirconium oxychloride octahydrate (ZrOCl2.8H2O) with NaOH solution at calcination temperature of 700°C. The synthesized samples were characterized to ensure structural, functional, morphological and chemical composition by several techniques. The monoclinic structure has been confirmed from XRD, SAED and Raman spectra. The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were established through SEM and TEM analyses. EDX spectra confirmed the formation of pure zirconium oxide. The band gap was calculated with the help of UV-Vis spectra and particle size was determined form XRD data using Debye Scherrer’s equation. The variation of band gap and particle size compared with different concentrations of precursor solution was studied. BIBECHANA 18 (2021) 1-9


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Isabel Padilla ◽  
Sol López-Andrés ◽  
Aurora López-Delgado

Two alumina polymorphs, the metaestableγ-Al2O3and the stableα-Al2O3, were obtained from thermal treatment of the precursorγ-AlOOH (boehmite). This precursor was prepared by a precipitation method employing different raw materials in order to study their effect on the synthesis process and several characteristics of the materials, such as the crystallite size, the thermal behavior, and the surface area. Aluminum chloride (AlCl3·6H2O) and an aluminum waste were used as the source of aluminum. A 1 M NaOH solution and a 1 M n-butylamine solution were used as alkalizing agents, due to their strong and weak alkaline characteristics, respectively. The XRD profiles of the boehmites obtained from waste show lower crystallinity than samples obtained from aluminum chloride. The content of water, from TG studies, was higher in the samples obtained from waste, which fit well with the smaller crystallite size. The use of n-butylamine as alkalizing agent favors the formation ofγ-alumina with higher surface area (177.2 cm2 g−1, for aluminum waste, and 159.4 cm2 g−1, for aluminum pure reagent). The temperature of transformation from gamma to alpha, from DTA results, is higher for samples obtained from the waste, and accordingly the presence of impurities in the waste stabilizes the metastable alumina phase.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 574
Author(s):  
Nikhat Perween ◽  
Sultan Alshehri ◽  
T. S. Easwari ◽  
Vivek Verma ◽  
Md. Faiyazuddin ◽  
...  

Molecules with poor aqueous solubility are difficult to formulate using conventional approaches and are associated with many formulation delivery issues. To overcome these obstacles, nanosuspension technology can be one of the promising approaches. Hence, in this study, the feasibility of mefenamic acid (MA) oral nanosuspension was investigated for pediatric delivery by studying the role of excipients and optimizing the techniques. Nanosuspensions of MA were prepared by adopting an antisolvent precipitation method, followed by ultrasonication with varying concentrations of polymers, surfactants, and microfluidics. The prepared nanosuspensions were evaluated for particle size, morphology, and rheological measures. Hydroxypropyl methylcellulose (HPMC) with varying concentrations and different stabilizers including Tween® 80 and sodium dodecyl sulfate (SLS) were used to restrain the particle size growth of the developed nanosuspension. The optimized nanosuspension formula was stable for more than 3 weeks and showed a reduced particle size of 510 nm with a polydispersity index of 0.329. It was observed that the type and ratio of polymer stabilizers were responsive on the particle contour and dimension and stability. We have developed a biologically compatible oral nanoformulation for a first-in-class drug beautifully designed for pediatric delivery that will be progressed toward further in vivo enabling studies. Finally, the nanosuspension could be considered a promising carrier for pediatric delivery of MA through the oral route with enhanced biological impact.


2018 ◽  
Vol 281 ◽  
pp. 40-45
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Cai Liang Pang ◽  
Jia Zhang ◽  
Xian Zhong Wang ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by co-precipitation method and hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that the precursor powder prepared via the co-precipitation method is mainly from amorphous to crystalline transition with the increasing calcination temperature, the precursor agglomeration is more serious, In the process of increasing the calcination temperature, the dispersibility of the roasted powder is greatly improved, which is favorable for the growth of the crystal grains, so that the particle size of the powder is gradually increased, the YAG precursor prepared by the co-precipitation method is transformed into YAG crystals, the phase transition occurs mainly between 900 and 1100°C. When the molar ratio of salt to alkali is Y3+: OH-=1: 8 via the hydrothermal reaction, the YAG particles with homogeneous morphology can be obtained. When the molar ratio of salt and alkali is increased continuously, the morphology of YAG particles is not obviously changed. The co-precipitation method is easy to control the particle size, the hydrothermal method is easy to control the particle morphology.


2018 ◽  
Vol 68 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Maria-Viorica Ciocilteu ◽  
Andreea Gabriela Mocanu ◽  
Adriana Mocanu ◽  
Catalin Ducu ◽  
Oana Elena Nicolaescu ◽  
...  

Abstract The main objective of this study was to synthesize hydroxyapatite-ciprofloxacin composites using a chemical precipitation method and to evaluate the properties and in vitro release profile of the drug from the hydroxyapatite-ciprofloxacin composites. Composite characterization was achieved by FT-IR, XRD and DLS. Ciprofloxacin determination was accomplished by HPLC, resulting in good incorporation efficiency of the drug (18.13 %). The in vitro release study (Higuchi model C = K t1/2 and Ritger-Peppas model, C = K t0.6) showed a diffusion-controlled mechanism. The antibacterial activity showed that the bacterial growth inhibition zones were approximately equal for the synthesis composites and for the mechanical mixture on the Staphylococcus aureus germ. The use of hydroxyapatite, which is a biocompatible, bioactive and osteoconductive material, with ciprofloxacin, which has good antibacterial activity in this composite, makes it suitable for the development of bone grafts. Furthermore, the synthesis process allows a slow local release of the drug.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 874
Author(s):  
Haifeng Wang ◽  
Jianwei Lu ◽  
Ruoxuan Wang ◽  
Yungu Dong ◽  
Linfeng Ding

The synthesis process has a significant influence on the properties of Ca1-xTiO3:Eu3+x phosphors; thus, an optimized process will lead to a better performance of the Ca1-xTiO3:Eu3+x phosphors. In this work, the feasibility of synthesizing the Ca1-xTiO3:Eu3+x phosphor with a good luminescent performance by combining the chemical co-precipitation method and microwave-assisted sintering was studied. The precursor of Ca1-xTiO3:Eu3+x phosphors were prepared by the chemical co-precipitation method. To find an optimized process, we applied both of the traditional (furnace) sintering and the microwave-assisted sintering to synthesize the Ca1-xTiO3:Eu3+x phosphors. We found out that a sintering power of 528 W for 50 min (temperature around 950 °C) by a microwave oven resulted in similar emission intensity results compared to traditional furnace sintering at 900 °C for 2.5 h. The synthesized Ca1-xTiO3:Eu3+x phosphors has an emission peak at 617 nm (5D0→7F2), which corresponds to the red light band. This new synthesized method is an energy efficient, time saving, and environmentally friendly means for the preparation of Ca1-xTiO3:Eu3+x red phosphor with good luminescent performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Jancik Prochazkova ◽  
Markus Clark Scharber ◽  
Cigdem Yumusak ◽  
Ján Jančík ◽  
Jiří Másilko ◽  
...  

Abstract This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508–519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.


2019 ◽  
Vol 818 ◽  
pp. 44-49
Author(s):  
Rista Mutia Anggraini ◽  
Apri I. Supii ◽  
Gede Bayu Suparta ◽  
Yusril Yusuf

Carbonate Hydroxyapatite (CHAp) is one of biomaterial that can be synthesized from natural ingredients. CHAp has been successfully synthesized from pearl shells (Pinctada maxima) using the precipitation method. The pH of the synthesis process affects several characteristics of CHAp, including crystallinity, crystal size, morphology, and carbonate content. XRD data showed that CaO obtained from pearl shell powder through the calcination process. The highest crystallinity of CHAp occurs when the pH is 8, and the lowest is at pH 10. The size of the crystalline CHAp decreased when the pH increased. Based on SEM data, the morphology of CaO looks more tenuous than the morphology of CaCO3 due to CO2 release during the decomposition process. The magnitude of pH greatly influences the morphology of CHAp where morphology looks different for different pH. EDX data shows that CHAp has the highest carbonate content when pH 10 with a smaller Ca/P ratio when the carbonate content gets bigger.


Sign in / Sign up

Export Citation Format

Share Document