scholarly journals Effects of resins on mechanical performance of polymer concrete

2021 ◽  
Vol 73 (10) ◽  
pp. 995-1006

Cement manufacturing is currently responsible for one of the highest levels of carbon dioxide (CO2) emissions and energy consumption in construction industry. Thus, the use of sustainable binder materials instead of cement has become a worldwide issue. Previous studies have shown that polymers are a reliable and sustainable alternative to cement in construction, while polymer concretes (PCs) are seen as the biggest alternative to conventional cement concretes in the long term. In this study, the main objective is to investigate the effects of resins, which are used as binder components in polymer concrete, on the mechanical properties of the PCs. To achieve this, ten different orthophthalic unsaturated polyester resins (OUPR) that are commonly used in construction industry are considered, and fresh concrete tests and hardened concrete tests are performed on deck plates prepared with these resins. Based on the analysis results, each resin is given a performance index. The experimental results indicate that the type of resin has a significant impact on mechanical properties of polymer concrete.

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Sara Metwally ◽  
Daniel P. Ura ◽  
Zuzanna J. Krysiak ◽  
Łukasz Kaniuk ◽  
Piotr K. Szewczyk ◽  
...  

Atopic dermatitis (AD) is a chronic, inflammatory skin condition, caused by wide genetic, environmental, or immunologic factors. AD is very common in children but can occur at any age. The lack of long-term treatments forces the development of new strategies for skin regeneration. Polycaprolactone (PCL) is a well-developed, tissue-compatible biomaterial showing also good mechanical properties. In our study, we designed the electrospun PCL patches with controlled architecture and topography for long-term release in time. Hemp oil shows anti-inflammatory and antibacterial properties, increasing also the skin moisture without clogging the pores. It can be used as an alternative cure for patients that do not respond to traditional treatments. In the study, we tested the mechanical properties of PCL fibers, and the hemp oil spreading together with the release in time measured on skin model and human skin. The PCL membranes are suitable material as patches or bandages, characterized by good mechanical properties and high permeability. Importantly, PCL patches showed release of hemp oil up to 55% within 6 h, increasing also the skin moisture up to 25%. Our results confirmed that electrospun PCL patches are great material as oil carriers indicating a high potential to be used as skin patches for AD skin treatment.


2013 ◽  
Vol 687 ◽  
pp. 185-190 ◽  
Author(s):  
Masoud Jamshidi ◽  
Mohammad Javad Ghasemi ◽  
Abdolreza Hashemi

Polymer concretes (PC) were introduced to building and construction industry more than 50 years ago. Gradually, they became a suitable substitute for concrete structures. Their superior properties againt aggresives introduced them as a good overlay for concrete structures; however, their application was shortly diminished due to the higher costs. In this research a homemade cost-quality effective resin (unsaturated polyester) is used as binder in the polymer concrete production. Polymer concrete specimens were evaluated for compressive strength and its fluctuation due to cyclic exposure to different aggresive solutions (sulfuric acid, nitric acid, citric acid, chloridric acid, sodum sulfate, water, demineralized water, sodium hydroxid, potasium hydroxid and gas oil). It was found that PC specimens degraded more in alkali conditioned in comparison to acid solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Francisco Carrión ◽  
Laura Montalbán ◽  
Julia I. Real ◽  
Teresa Real

Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.


2017 ◽  
Vol 37 (2) ◽  
pp. 99-106
Author(s):  
Mario Rodrigo Rubio ◽  
Duván Julián Martínez ◽  
Carlos Enrique Daza ◽  
Fredy Alberto Reyes

The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2) modified with carbon nanotubes and carbon nanofibers (CNTF). CNTF were made by means the Catalytic Vapor Deposition (CVD) technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl) catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1) HMA-2 modified with purified CNTF; 2) HMA-2 modified with non-purified CNTF and, 3) a Conventional HMA-2 (control). Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr) and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.


2001 ◽  
Vol 17 (4) ◽  
pp. 205-224 ◽  
Author(s):  
A. Benny Cherian ◽  
Eby Thomas Thachil

Unsaturated polyester resins are extensively used in the fibre-reinforced plastic industry. The fracture toughness and impact resistance of rigid unsaturated polyester can be improved by the incorporation of elastomers by physical and chemical methods. In the physical method, two strategies are adopted. In the first, various masticated elastomers are dissolved in styrene and blended with unsaturated polyester resin. In this study, the mechanical properties of cured blends are compared with the unmodified resin and the performance of nitrile rubber is found to be far superior to all other rubbers considered. In the second approach, elastomers are modified by grafting with maleic anhydride. These maleated elastomers are then dissolved in styrene and blended with polyester resin. Maleic anhydride modified elastomers are found to improve the mechanical properties such as toughness, impact resistance and tensile strength of the cured resin to a greater extent compared to unmodified elastomers.


Sign in / Sign up

Export Citation Format

Share Document