scholarly journals ISOLATION OF BENZOPHENANTHRIDINE ALKALOIDS FROM MACLEAYA LEAVES WITHOUT USING TOXIC SOLVENTS

2019 ◽  
pp. 79-84
Author(s):  
Igor G. Casian ◽  
Ana C. Casian ◽  
Vladimir Vasile Valica

This study aims to develop a new method for isolation of benzophenanthridine alkaloids from Macleaya leaves, which do not use toxic or ecologically dangerous solvents or reagents. According to this method, the extraction of alkaloids from the plant material is performed with 90% ethanol by percolation at 40±2 °C until 5–8 parts (V/M) of extract is obtained. The extract is acidified with sulphuric acid to pH 4.0–4.5 for sedimentation of ballast substances. After filtration or centrifugation, sulphuric acid is added to the extract to obtain the concentration of 0.1–0.12 M. Crystallisation of bisulphates of alkaloids occurs during 14 days at room temperature, then is finished in 7 days at 2–8 °C. The crude product is separated by filtration, washed with 96% ethanol and dried. Upon purification, alkaloids pass into a concentrated aqueous solution in the form of sulphates. A major part of impurities is removed by sedimentation, the remainder – by sorption on activated carbon. Than alkaloids are crystallised again in the form of bisulphates or other salts as required. The procedure has been created to obtain the sum of benzophenanthridine alkaloids of Macleaya in form of salicylates. This substance, named "Sanguirisal", is proposed as an active substance for preparation of pharmaceutical forms for topic administration, being much more lipophilic than sanguiritrine.

1975 ◽  
Vol 28 (3) ◽  
pp. 673 ◽  
Author(s):  
DJ Collins ◽  
C Lewis ◽  
JM Swan

Treatment of cyclododecane-r-1,c-5,c-9-triyl tris(p-toluenesulphonate) with sodium azide in dimethyl-formamide at 100� for 6 h gave the corresponding cis,cis-triazide which upon hydrogenation or reduction with lithium aluminium hydride gave cyclododecane-r-1,c-5,c-9-triamine, isolated as the tris-salicylidene derivative. Acid hydrolysis of this, removal of the salicylaldehyde, and treatment of the aqueous solution with sodium carbonate and 2,3-dimethoxybenzoyl chloride gave r-1,c-5,c- 9-tris(2,3-dimethoxybenzamido)cyclododecane. ��� Treatment of (E,E,E)-cyclododeca-1,5,9-triene with an excess of acetonitrile and sulphuric acid at room temperature for three days gave 18% of (E,E)-1-acetamidocyclododeca-4,8-diene; no di- or tri-amides were isolated.


2010 ◽  
Vol 7 (3) ◽  
pp. 1003-1007 ◽  
Author(s):  
J. J. Chamargore ◽  
J. V. Bharad ◽  
B. R. Madje ◽  
M. B. Ubale

Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye concentration and contact time. The influence of these system variables were investigated to observe the effect on the rate of dye uptake. Sulphuric acid treated marble powder has shown better adsorptive capacity than untreated marble powder and thus it has become an interesting option for dye removal from industrial effluents.


2014 ◽  
Vol 57 (7) ◽  
pp. 3048-3058 ◽  
Author(s):  
Mahalingam Murugan ◽  
Manickam Jansi Rani ◽  
Perumal Subramaniam ◽  
Esakkiappan Subramanian

2013 ◽  
Vol 807-809 ◽  
pp. 582-590
Author(s):  
Zi Cheng Yi ◽  
Shi Ming Luo ◽  
Gen Li ◽  
Hua Shou Li ◽  
Hui Min Lin

The adsorption characteristics of Cr(VI) on activated carbon prepared from several agriculture by-products via sulphuric acid-treatment were compared and the best concentration of sulphuric acid for carbonization were evaluated. It is confirmed that peanut shell is best material for the absorption of Cr(VI) ion from aqueous solution among hybrid giant napier straw, rice husk and commercial activated carbon in this study. The effects of agitation time, solution pH, temperature and Cr(VI) initial concentration on Cr(VI) adsorption were investigated. The 3:1 volume ratio of sulphuric acid : deionized water is the optimal concentration for Cr(VI) biosorption for peanut shell carbonization. Cr(VI) adsorption is highly dependent on solution pH. Initial solution pH =1.5 was the most favorable pH for Cr(VI) removal. Cr(VI) biosorption increases with increasing initial concentration, agitation time and solution temperature. The adsorption kinetics is found well fitted to the pseudo-second-order kinetic model. The adsorption equilibrium data are best represented by Langmuir model.The maximum adsorption capacity of carbonized peanut shell for Cr(VI) reached 26.22 mg/g.


2014 ◽  
Vol 625 ◽  
pp. 893-896
Author(s):  
Mohd Faisal Taha ◽  
Anis Shuib ◽  
Maizatul Shima Shaharun ◽  
Azry Borhan

The potential of rice husk-based activated carbon (RHAC) as an alternative low-cost adsorbent for the removal of Ni2+ from aqueous solution was studied. RHAC was prepared via chemical treatment using NaOH followed by the carbonization process. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2 adsorption. The adsorption studies to remove Ni2+ from aqueous solution using RHAC were carried out at a fixed initial concentration of Ni2+ (150 ppm) with varying RHAC as a function of contact time at room temperature. The concentration of Ni2+ was determined by atomic absorption spectrophotometer (AAS). The maximum removal of Ni2+ was increased from 40% to 89% when the amount of RHAC was increased from 0.1 g to 0.5 g. The isotherm and kinetic analyses showed that equilibrium data of adsorption studies fitted well Langmuir, Freundlich and second order kinetic models.


Carbon ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 1081-1084 ◽  
Author(s):  
Dan Mugisidi ◽  
Aria Ranaldo ◽  
Johny W. Soedarsono ◽  
Muhammad Hikam

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1897
Author(s):  
Hideyasu China ◽  
Nami Kageyama ◽  
Hotaka Yatabe ◽  
Naoko Takenaga ◽  
Toshifumi Dohi

We report a convenient and practical method for the preparation of nonexplosive cyclic hypervalent iodine(III) oxidants as efficient organocatalysts and reagents for various reactions using Oxone® in aqueous solution under mild conditions at room temperature. The thus obtained 2-iodosobenzoic acids (IBAs) could be used as precursors of other cyclic organoiodine(III) derivatives by the solvolytic derivatization of the hydroxy group under mild conditions of 80 °C or lower temperature. These sequential procedures are highly reliable to selectively afford cyclic hypervalent iodine compounds in excellent yields without contamination by hazardous pentavalent iodine(III) compound.


Sign in / Sign up

Export Citation Format

Share Document