Evolution and function of mobile genetic elements and DNA methyltransferases in extraintestinal pathogenic Escherichia coli

2019 ◽  
Author(s):  
Melinda Ashcroft
2020 ◽  
Author(s):  
Melinda M. Ashcroft ◽  
Brian M. Forde ◽  
Minh-Duy Phan ◽  
Kate M. Peters ◽  
Leah W. Roberts ◽  
...  

AbstractEscherichia coli Sequence Type (ST)101 is an emerging, multi-drug resistant lineage associated with carbapenem resistance. We recently completed a comprehensive genomics study on mobile genetic elements (MGEs) and their role in blaNDM-1 dissemination within the ST101 lineage. DNA methyltransferases (MTases) are also frequently associated with MGEs, with DNA methylation guiding numerous biological processes including genomic defence against foreign DNA and regulation of gene expression. The availability of Pacific Biosciences Single Molecule Real Time Sequencing data for seven ST101 strains enabled us to investigate the role of DNA methylation on a genome-wide scale (methylome). We defined the methylome of two complete (MS6192 and MS6193) and five draft (MS6194, MS6201, MS6203, MS6204, MS6207) ST101 genomes. Our analysis identified 14 putative MTases and eight N6-methyladenine DNA recognition sites, with one site that has not been described previously. Furthermore, we identified a Type I MTase encoded within a Transposon 7-like Transposon and show its acquisition leads to differences in the methylome between two almost identical isolates. Genomic comparisons with 13 previously published ST101 draft genomes identified variations in MTase distribution, consistent with MGE differences between genomes, highlighting the diversity of active MTases within strains of a single E. coli lineage. It is well established that MGEs can contribute to the evolution of E. coli due to their virulence and resistance gene repertoires. This study emphasises the potential for mobile genetic elements to also enable highly similar bacterial strains to rapidly acquire genome-wide functional differences via changes to the methylome.Impact StatementEscherichia coli ST101 is an emerging human pathogen frequently associated with carbapenem resistance. E. coli ST101 strains carry numerous mobile genetic elements that encode virulence determinants, antimicrobial resistance, and DNA methyltransferases (MTases). In this study we provide the first comprehensive analysis of the genome-wide complement of DNA methylation (methylome) in seven E. coli ST101 genomes. We identified a Transposon carrying a Type I restriction modification system that may lead to functional differences between two almost identical genomes and showed how small recombination events at a single genomic region can lead to global methylome changes across the lineage. We also showed that the distribution of MTases throughout the ST101 lineage was consistent with the presence or absence of mobile genetic elements on which they are encoded. This study shows the diversity of MTases within a single bacterial lineage and shows how strain and lineage-specific methylomes may drive host adaptation.Data SummarySequence data including reads, assemblies and motif summaries have previously been submitted to the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov) under the BioProject Accessions: PRJNA580334, PRJNA580336, PRJNA580337, PRJNA580338, PRJNA580339, PRJNA580341 and PRJNA580340 for MS6192, MS6193, MS6194, MS6201, MS6203, MS6204 and MS6207 respectively. All supporting data, code, accessions, and protocols have been provided within the article or through supplementary data files.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


Author(s):  
Jorge A. Moura de Sousa ◽  
Eduardo P. C. Rocha

Bacteriophages (phages) are bacterial parasites that can themselves be parasitized by phage satellites. The molecular mechanisms used by satellites to hijack phages are sometimes understood in great detail, but the origins, abundance, distribution and composition of these elements are poorly known. Here, we show that P4-like elements are present in more than 30% of the genomes of Enterobacterales, and in almost half of those of Escherichia coli , sometimes in multiple distinct copies. We identified over 1000 P4-like elements with very conserved genetic organization of the core genome and a few hotspots with highly variable genes. These elements are never found in plasmids and have very little homology to known phages, suggesting an independent evolutionary origin. Instead, they are scattered across chromosomes, possibly because their integrases are often exchanged with other elements. The rooted phylogenies of hijacking functions are correlated and suggest longstanding coevolution. They also reveal broad host ranges in P4-like elements, as almost identical elements can be found in distinct bacterial genera. Our results show that P4-like phage satellites constitute a very distinct, widespread and ancient family of mobile genetic elements. They pave the way for studying the molecular evolution of antagonistic interactions between phages and their satellites. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Nicole Stoesser ◽  
Anna E. Sheppard ◽  
Louise Pankhurst ◽  
Nicola De Maio ◽  
Catrin E. Moore ◽  
...  

ABSTRACT Escherichia coli sequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection ( n = 215) of sequenced ST131 E. coli isolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/ H 30R and C2/ H 30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/ H 30Rx clade driven by the acquisition of a bla CTX-M-15 -containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration of bla CTX-M within subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, the bla CTX-M-14/14-like group. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages of E. coli . These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. IMPORTANCE Escherichia coli , perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specific E. coli lineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements.


2021 ◽  
Author(s):  
Rafael Pinilla-Redondo ◽  
Jakob Russel ◽  
David Mayo-Muñoz ◽  
Shiraz A Shah ◽  
Roger A Garrett ◽  
...  

Abstract Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.


2020 ◽  
Vol 26 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Larissa Alvarenga Batista Botelho ◽  
Gabriela Bergiante Kraychete ◽  
Patrícia Batista Rocha ◽  
Ana Paula de Souza da-Silva ◽  
Renata Cristina Picão ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document