scholarly journals Tissue culture and biotechnological techniques applied to passion fruit with ornamental potential: an overview

2019 ◽  
Vol 25 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Andreia Izabel Mikosvki ◽  
Nayara Tayane Silva ◽  
Claudinei Santos Souza ◽  
Marcelo Dias Machado ◽  
Wagner Campos Otoni ◽  
...  

The ornamental flower sector has growing over the past years worldwide with potential for further expansion. Among the ornamental plants, Passiflora species have been gaining ground in the market, mainly in European and North American countries. However, the market aiming the use of these species in ornamentation is still poorly explored. The inclusion of passion flower in the list of ornamental plants is related to the peculiar characteristics of the flower as it is complex structure, capacity of flowering all year long and also by the abundance and exuberance of the leaves, which in many species adds an ornamental value. Among the biotechnological tools for the production of ornamental plants, tissue culture has been outstanding in the cloning of elite genotypes, with high phytosanitary quality and large scale production. In addition, it offers possibilities of producing new varieties with characteristics peculiar to the market of ornamental plants. The diversity of wild Passiflora opens perspectives to the conservation, market and production of ornamental Passiflora cultivars.

2019 ◽  
Vol 7 (24) ◽  
pp. 14447-14454 ◽  
Author(s):  
Zhen Gao ◽  
Peng Liu ◽  
Xuemei Fu ◽  
Limin Xu ◽  
Yong Zuo ◽  
...  

By bridging photoactive and electrochemically active fibers via warp yarns using an industrial loom, we realized desirable continuous and large-scale production of self-powered textiles, which have remained challenging in the past decade. This work possibly represents a new advancement for flexible integrated power systems via weaving.


Author(s):  
Allan John ◽  
Bill Mason

SynopsisA combination of two vegetative techniques is seen as a possibility for large-scale production of juvenile, rooted Sitka spruce cuttings of improved genotype. Tissue culture techniques, under development, would be used to produce large numbers of stock plants for stem cuttings production. Cuttings techniques, currently under commercial trial, would be used to produce the rooted plants for forest establishment.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2078
Author(s):  
Tristan K. Adams ◽  
Nqobile A. Masondo ◽  
Pholoso Malatsi ◽  
Nokwanda P. Makunga

The development of a protocol for the large-scale production of Cannabis and its variants with little to no somaclonal variation or disease for pharmaceutical and for other industrial use has been an emerging area of research. A limited number of protocols have been developed around the world, obtained through a detailed literature search using web-based database searches, e.g., Scopus, Web of Science (WoS) and Google Scholar. This article reviews the advances made in relation to Cannabis tissue culture and micropropagation, such as explant choice and decontamination of explants, direct and indirect organogenesis, rooting, acclimatisation and a few aspects of genetic engineering. Since Cannabis micropropagation systems are fairly new fields, combinations of plant growth regulator experiments are needed to gain insight into the development of direct and indirect organogenesis protocols that are able to undergo the acclimation stage and maintain healthy plants desirable to the Cannabis industry. A post-culture analysis of Cannabis phytochemistry after the acclimatisation stage is lacking in a majority of the reviewed studies, and for in vitro propagation protocols to be accepted by the pharmaceutical industries, phytochemical and possibly pharmacological research need to be undertaken in order to ascertain the integrity of the generated plant material. It is rather difficult to obtain industrially acceptable micropropagation regimes as recalcitrance to the regeneration of in vitro cultured plants remains a major concern and this impedes progress in the application of genetic modification technologies and gene editing tools to be used routinely for the improvement of Cannabis genotypes that are used in various industries globally. In the future, with more reliable plant tissue culture-based propagation that generates true-to-type plants that have known genetic and metabolomic integrity, the use of genetic engineering systems including “omics” technologies such as next-generation sequencing and fast-evolving gene editing tools could be implemented to speed up the identification of novel genes and mechanisms involved in the biosynthesis of Cannabis phytochemicals for large-scale production.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 181
Author(s):  
Wai Kian Tan ◽  
Hiroyuki Muto ◽  
Go Kawamura ◽  
Zainovia Lockman ◽  
Atsunori Matsuda

In materials processing, the sol–gel method is one of the techniques that has enabled large-scale production at low cost in the past few decades. The versatility of the method has been proven as the fabrication of various materials ranging from metallic, inorganic, organic, and hybrid has been reported. In this review, a brief introduction of the sol–gel technique is provided and followed by a discussion of the significance of this method for materials processing and development leading to the creation of novel materials through sol–gel derived coatings. The controlled modification of sol–gel derived coatings and their respective applications are also described. Finally, current development and the outlook of the sol–gel method for the design and fabrication of nanomaterials in various fields are described. The emphasis is on the significant potential of the sol–gel method for the development of new, emerging technologies.


Author(s):  
Anh N. Tran-Ly ◽  
Carolina Reyes ◽  
Francis W. M. R. Schwarze ◽  
Javier Ribera

Abstract Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Sign in / Sign up

Export Citation Format

Share Document