scholarly journals Astroparticle Physics Today

10.14311/1700 ◽  
2013 ◽  
Vol 53 (1) ◽  
Author(s):  
Franco Giovannelli

In this short review paper I will draw attention to the most important steps made in the past decade toward a better understanding of the physics governing our Universe. The results that I will discuss are drawn from the photonic astrophysics, particle astrophysics, and neutrino astrophysics, which constitute the main tools for exploring the Universe. The union of these three tools has given rise to a new field of physics known as Astroparticle Physics. Because of the limited length of this paper, I have selected only a few arguments that, in my opinion, have been crucial for the progress of Physics.

2014 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Franco Giovannelli ◽  
Lola Sabau-Graziati

In this short review paper we comment on some the most important steps that have been made in the past decades for a better understanding of the physics governing our Universe. The results we discuss come from the many groundand-space-based experiments developed for measuring astrophysical sources in various energy bands. These experimental results are discussed within the framework of current theoretical models. Because of the limited length of this paper, we have selected only a few topics that, in our opinion, have been crucial for the progress of our understanding of the physics of cosmic sources.


2013 ◽  
Vol 53 (A) ◽  
pp. 483-496 ◽  
Author(s):  
Franco Giovannelli

In this brief review paper I will point to the most important steps that have been made in recent decades toward a better understanding of the physics governing our Universe. Because of the limited length of this paper, I have selected only a few results that, in my opinion, have been of crucial importance.


2017 ◽  
Vol 37 (9) ◽  
pp. 879-895 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Harendra K. Narang ◽  
Somnath Bhattacharya

Abstract Extensive efforts have been made in the last decade for the development of natural fibre composites. This development paved the way for engineers and researchers to come up with natural fibre composites (NFCs) that exhibit better mechanical properties. The present review is based on the mechanical properties of jute, abaca, coconut, kenaf, sisal, and bamboo fibre-reinforced composites. Before selecting any NFC for a particular application, it becomes necessary to understand its compatibility for the same, which can be decided by knowing its mechanical properties such as tensile, flexural, and impact strengths. This review paper emphasises on the factors influencing the mechanical properties of NFCs like the type of matrix and fibre, interfacial adhesion, and compatibility between matrix and fibre. Efforts are also made to unveil the research gaps from the past literatures, as a result of which it is inferred that there is very limited work published in the field of vibration incorporating potential fillers such as red mud and fly ash with NFCs.


1973 ◽  
Vol 12 (2) ◽  
pp. 181-188
Author(s):  
Rafiq Ahmad

Like nations and civilizations, sciences also pass through period of crises when established theories are overthrown by the unpredictable behaviour of events. Economics is passing through such a crisis. The challenge thrown by the Great Depression of early 1930s took a decade before Keynes re-established the supremacy of economics. But this supremacy has again been upset by the crisis of poverty in the vast under-developed world which attained political independence after the Second World War. Poverty had always existed but never before had it been of such concern to economists as during the past twenty five years or so. Economic literature dealing with this problem has piled up but so have the agonies of poverty. No plausible and well-integrated theory of economic development or under-development has emerged so far, though brilliant advances have been made in isolated directions.


Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


Author(s):  
William Lane Craig

A survey of recent philosophical literature on the kalam cosmological argument reveals that arguments for the finitude of the past and, hence, the beginning of the universe remain robust. Plantinga’s brief criticisms of Kant’s argument in his First Antinomy concerning time are shown not to be problematic for the kalam argument. This chapter addresses, one by one, the two premises of the kalam, focusing on their philosophical aspects. The notion of infinity, both actual and potential, is discussed in relation to the coming into being of the universe. In addition, the scientific aspects of the two premises are also, briefly, addressed. Among these are the Borde-Guth-Vilenkin theorem, which proves that classical space-time cannot be extended to past infinity but must reach a boundary at some time in the finite past. This, among other factors, lends credence to the kalam argument’s second premise.


Author(s):  
Gianfranco Pacchioni

About 10,000 years ago, at the beginning of the agriculturalrevolution, on the whole earth lived between 5 and 8 million hunter-gatherers, all belonging to the Homo sapiens species. Five thousand years later, freed from the primary needs for survival, some belonging to that species enjoyed the privilege of devoting themselves to philosophical speculation and the search for transcendental truths. It was only in the past two hundred years, however, with the advent of the Industrial Revolution, that reaping nature’s secrets and answering fundamental questions posed by the Universe have become for many full-time activities, on the way to becoming a real profession. Today the number of scientists across the globe has reached and exceeded 10 million, that is, more than the whole human race 10,000 years ago. If growth continues at the current rate, in 2050 we will have 35 million people committed full-time to scientific research. With what consequences, it remains to be understood. For almost forty years I myself have been concerned with science in a continuing, direct, and passionate way. Today I perceive, along with many colleagues, especially of my generation, that things are evolving and have changed deeply, in ways unimaginable until a few years ago and, in some respects, not without danger. What has happened in the world of science in recent decades is more than likely a mirror of a similar and equally radical transformation taking place in modern society, particularly with the advent ...


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
Donald C. Williams

This chapter is about the arrow or direction of time against the backdrop of the pure manifold theory. It is accepted that the fact that time has a direction ought to be explained. It is proposed that the arrow of time is grounded in deeper facts about the four-dimensional nature of each object in the manifold and in facts about the overall four-dimensional shape of the universe. Towards the end of the chapter the possibility of time travel is discussed. It is argued that time travel is metaphysically possible and that there is a reasonable and intelligible sense in which a time traveler can and cannot change the past, according to the pure manifold theory.


Author(s):  
John Hunsley ◽  
Eric J. Mash

Evidence-based assessment relies on research and theory to inform the selection of constructs to be assessed for a specific assessment purpose, the methods and measures to be used in the assessment, and the manner in which the assessment process unfolds. An evidence-based approach to clinical assessment necessitates the recognition that, even when evidence-based instruments are used, the assessment process is a decision-making task in which hypotheses must be iteratively formulated and tested. In this chapter, we review (a) the progress that has been made in developing an evidence-based approach to clinical assessment in the past decade and (b) the many challenges that lie ahead if clinical assessment is to be truly evidence-based.


Sign in / Sign up

Export Citation Format

Share Document