scholarly journals Detection, Identification, and Quantification of SF6 Point-Source Emissions Using Hyper-Cam LW Airborne Platform

2021 ◽  
Vol 25 (3) ◽  
pp. 37-41
Author(s):  
Mariusz Kastek ◽  
Krzysztof Firmanty ◽  
Benjamin Saute ◽  
Philippe Gagnon ◽  
Martin Lariviere-Bastien ◽  
...  

Detection, identification, and quantification of greenhouse gases is essential to ensure compliance with regulatory guidelines and mitigate damage associated with anthropogenic climate change. Passive infrared hyperspectral imaging technology is among the solutions that can detect, identify and quantify multiple greenhouse gases simultaneously. The Telops Hyper-Cam Airborne Platform is an established system for aerial thermal infrared hyperspectral measurements for gas survey applications. In support of the Hypercam, is developing a suite of hyperspectral imaging data processing algorithms that allow for gas detection, identification, and quantification in real-time. In the Fall of 2020, the Hyper-Cam-LW Airborne platform was flown above a validated SF6 gas release system to collect hyperspectral data for gas quantification analysis. This measurement campaign was performed to document performance of the Hyper-Cam gas quantification capabilities against known quantities of released gas.

Author(s):  
S. L. Borana ◽  
S. K. Yadav ◽  
R. T. Paturkar

<p><strong>Abstract.</strong> Imaging Hyperspectral data are advent as potential solutions in modeling, discrimination and mapping of vegetation species. Hyperspectral remote sensing provides valuable information about vegetation type, leaf area index, chlorophyll, and leaf nutrient concentration. Estimation of these vegetation parameters has been made possible by calculating various vegetation indices (VIs), usually by ratioing, differencing, ratioing differences and combinations of suitable spectral band. This paper presents a ground-based hyperspectral imaging system for characterizing vegetation spectral features. In this study, a ground-based hyperspectral imaging data (AISA VNIR 400&amp;ndash;960&amp;thinsp;nm, Spectral Resolution @ 2.5&amp;thinsp;nm) was used for spectral vegetation discrimination and characterization of natural desertic tree species. This study assessed the utility of hyperspectral imagery of 240 narrow bands in discrimination and classification of desert tree species in Jodhpur region using ENVI software. Vegetation indices derived from hyperspectral images used in the Analysis for tree species classification discrimination study. Prominent occurring two desertic tree species, viz., Neem and Babul in Jodhpur region could be effectively discriminated. Study demonstrated the potential utility of narrow spectral bands of Hyperspectral Imaging data in discriminating vegetation species in a desertic terrain.</p>


Author(s):  
Alpana Shukla ◽  
Rajsi Kot

<div><p><em>Recent advances in remote sensing and geographic information has opened new directions for the development of hyperspectral sensors. Hyperspectral remote sensing, also known as imaging spectroscopy is a new technology. Hyperspectral imaging is currently being investigated by researchers and scientists for the detection and identification of vegetation, minerals, different objects and background.</em><em> Hyperspectral remote sensing combines imaging and spectroscopy in a single system which often includes large data sets and requires new processing methods. Hyperspectral data sets are generally made of about 100 to 200 spectral bands of relatively narrow bandwidths (5-10 nm), whereas, multispectral data sets are usually composed of about 5 to 10 bands of relatively large bandwidths (70-400 nm). Hyperspectral imagery is collected as a data cube with spatial information collected in the X-Y plane, and spectral information represented in the Z-direction. </em><em>Hyperspectral remote sensing is applicable in many different disciplines. It was originally developed for mining and geology; it has now spread into fields such as agriculture and forestry, ecology, coastal zone management, geology and mineral exploration. This paper presents an overview of hyperspectral imaging, data exploration and analysis, applications in various disciplines, advantages and disadvantages and future aspects of the technique.</em></p></div>


2016 ◽  
Vol 71 (3) ◽  
pp. 507-519 ◽  
Author(s):  
Stephen M. Anthony ◽  
Jerilyn A. Timlin

Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghazal Azarfar ◽  
Ebrahim Aboualizadeh ◽  
Simona Ratti ◽  
Camilla Olivieri ◽  
Alessandra Norici ◽  
...  

AbstractAlgae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200–950 cm$$^{-1}$$ - 1 ), lipids (1740, 2852, 2922 cm$$^{-1}$$ - 1 ), and nucleic acid (1160 and 1201 cm$$^{-1}$$ - 1 ) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1288
Author(s):  
Cinmayii A. Garillos-Manliguez ◽  
John Y. Chiang

Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm—factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.


2021 ◽  
Vol 13 (8) ◽  
pp. 1562
Author(s):  
Xiangyu Ge ◽  
Jianli Ding ◽  
Xiuliang Jin ◽  
Jingzhe Wang ◽  
Xiangyue Chen ◽  
...  

Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1241
Author(s):  
Véronique Gomes ◽  
Marco S. Reis ◽  
Francisco Rovira-Más ◽  
Ana Mendes-Ferreira ◽  
Pedro Melo-Pinto

The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4436
Author(s):  
Mohammad Al Ktash ◽  
Mona Stefanakis ◽  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Marc Brecht

A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.


Sign in / Sign up

Export Citation Format

Share Document