scholarly journals Designing a Microstrip coupled line bandpass filter

2013 ◽  
Vol 2 (4) ◽  
pp. 266 ◽  
Author(s):  
Taoufik Ragani ◽  
N. Amar Touhami ◽  
M. Agoutane

Bandpass filters play a significant role in wireless communication systems. Transmitted and received signals have to be filtered at a certain center frequency with a specific bandwidth, in this paper, a coupled-line bandpass Filter at the center frequency 6 GHz with the wide bandwidth of 2 GHz. this type of filter can be used in WLAN and other applications for the frequency range of 5-7 GHz.

2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 477
Author(s):  
Warsha Balani ◽  
Mrinal Sarvagya ◽  
Ajit Samasgikar ◽  
Tanweer Ali ◽  
Pradeep Kumar

In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.


2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2019 ◽  
Vol 61 (10) ◽  
pp. 763-772
Author(s):  
V. V. Biryukov ◽  
V. L. Vaks ◽  
K. I. Kisilenko ◽  
A. N. Panin ◽  
S. I. Pripolzin ◽  
...  

2014 ◽  
Vol 875-877 ◽  
pp. 2219-2223 ◽  
Author(s):  
Zhong Liang Deng ◽  
Xing Jie Cao

Tunable bandpass filters are generally preferred and are used extensively in the mobile communication systems. In this paper, a design of the RF MEMS tunable combline bandpass filter is proposed. Firstly, the theory of the RF MEMS tunable combline bandpass filter is presented. Secondly, a combline bandpass filter which have a tunable frequency range from 18GHz to 27GHz is designed and simulated by using the EDA simulation software. Its bandwidth is about 1GHz in the tunable frequency range. From the simulation results, the designed filter is not only compact and effortless to fabricate but also relatively superior in some aspects.


Author(s):  
Macho Revelino Siahaan ◽  
Levi Olivia Nur ◽  
Radial Anwar

One of the challenges of antenna development for wireless communication systems is to create an antenna that casn be operated in wide frequency so that a single antenna can be used in various wireless communication technologies. This paper discussed the wideband antenna with Telkom University Logo-shaped patch, using Fr-4 (?r = 4.3) substrate with 1.6 mm thickness. The antenna can be operated in the frequency range of 760 MHz – 13.75 GHz. The gain performance at the working frequency is still above 0 dBi. Hence, the antenna design to work properly for wireless communication systems which require relatively long distances. The Defected Ground Substrate (DGS) method is applied to achieve that bandwidth. Measurement shows the logo-shaped patch antenna achieves 12.994 GHz bandwidth with 1.33 VSWR and gain 2.85 at 921.5 MHz frequency.


Sign in / Sign up

Export Citation Format

Share Document