scholarly journals Internet of things survey on crop field smart irrigation automation using IOT

2018 ◽  
Vol 7 (2.8) ◽  
pp. 503
Author(s):  
T Pavan Kumar ◽  
Satyam Kumar Lala ◽  
Boppana Sravani ◽  
Andru Sandeep

This paper gives a general survey on Crop Field Smart Irrigation Mechanization utilizing web from claiming things. The paper covers details regarding the basics of Internet of Things and also the importance of Agriculture in a country like India. Internet of Things is fundamentally those intercontinental for everyone electronic units through Internet. By this interconnection the devices work in a synchronous way to achieve common goals. It is an evolving technology in the areas of trade, industry, medical and many applications. Many applications of IoT make use of sensors for detecting and activating gadgets helping in sharing of data. Agriculture is one such trade on which the entire nation is dependent. We in brief review the various techniques which will allow the farmers to grow more of their crops and reduce wastage of water by using sensors and automation of the irrigation system. The irrigation of crop fields depends on the data collected by the soil moisture sensors. The review can also be extended by understanding the way light intensity is controlled in greenhouses and also that the farmers can be able to monitor the field conditions from anywhere. This system is very useful in areas with scarcity of water. This sys is 92% more efficient than the conventional approach.

2018 ◽  
Vol 7 (4.5) ◽  
pp. 370 ◽  
Author(s):  
Ashwini B V

In India, agriculture plays an important role for development in food production. In our country, agriculture depends on the monsoons which are not sufficient source of water. So the irrigation is used in agriculture field. Internet of Things (IoT) is a milestone in the evolution of technology. IOT plays an important role in many fields, one of that is Agriculture by which it can feed billions of people on Earth in future. The objective of this paper is aiming to overcome this challenge, the whole system is micro control based and can be operated from remote location through wireless transmission so there is no need to concern about irrigation timing as per crop or soil condition. Sensor is used to take sensor reading of soil like soil moisture, temperature, air moisture and decision making is controlled by user (farmer) by using microcontroller. The data received from sensors are sent to server database using wireless transmission. The irrigation will be automated when the moisture and temperature of the field is reduced. The farmer is notified with the information regarding field condition through mobile periodically. This system will be more useful in areas where there is scarcity of water and will be worth efficient with satisfying its requirements.  


In the current condition, it is difficult to increase plant development and reduce expenses in agricultural sectors; nevertheless, an advanced thought leads to the use of an automated model that introduces automation in the irrigation system, which can aid in improved water and human resources management. An automated model has been developed using sensors and microcontroller technology, to make the most efficient use of water supply for irrigation. A soil moisture content detector is inserted into the soil of the crops, and an ultrasonic sensor is placed above the soil of the crops to measure the water level after irrigation has begun. A C++ program with threshold values for the moisture sensor was used to start the system in the crop field depending on the soil moisture level, and an ultrasonic sensor was used to control the water in the crop field. The Arduino UNO board is a microcontroller inbuilt of Atmel in the mega AVR family (ATMega328) and the sensors were used to lead the model in turning ON/OFF. A microcontroller was included in this model to run the program by receiving sensor input signals and converting them to soil water content and water level values in the crop field. The microcontroller began by receiving input values, which resulted in an output instructing the relay to turn on the groundwater pump. An LCD screen has also been interfaced with the microcontroller to show the percentage of moisture in the soil, field water level, and pump condition. When the soil moisture level reaches 99 percent and the water level reaches 6 cm after 2.5 and 4 minutes, respectively, the pump is turned off. This model, according to the study, might save water, time, and reduce human effort.


2021 ◽  
Vol 1 (1) ◽  
pp. 53-64
Author(s):  
Lukman Medriavin Silalahi ◽  
Setiyo Budiyanto ◽  
Freddy Artadima Silaban ◽  
Arif Rahman Hakim

Irrigation door is a big issue for farmers. The factor that became a hot issue at the irrigation gate was the irresponsible attitude of the irrigation staff regarding the schedule of opening/closing the irrigation door so that it caused the rice fields to becoming dry or submerged. In this research, an automatic prototype system for irrigation system will be designed based on integrating several sensors, including water level sensors, soil moisture sensors, acidity sensors. This sensor output will be displayed on Android-based applications. The integration of communication between devices (Arduino Nano, Arduino Wemos and sensors supporting the irrigation system) is the working principle of this prototype. This device will control via an Android-based application to turn on / off the water pump, to open/close the irrigation door, check soil moisture, soil acidity in real time. The pump will automatically turn on based on the water level. This condition will be active if the water level is below 3cm above ground level. The output value will be displayed on the Android-based application screen and LCD screen. Based on the results of testing and analysis of the prototype that has been done in this research, the irrigation door will open automatically when the soil is dry. This condition occurs if the water level is less than 3 cm. The calibrated Output value, including acidity sensor, soil moisture sensor and water level sensor, will be sent to the server every 5 seconds and forwarded to an Android-based application as an output display.


Internet of Things (IoT) is an advanced technology for monitoring and controlling device anywhere in the world. It can connect devices with living things. Agriculture is one of the major sectors which contribute a lot to the financial of India and to get quality product, proper irrigation has to be performed, to reduce man power using modern technology of internet of things IoT in today’s life. Soil moisture is an integral part of plant life, which directly affects crop growth and yield, as well as irrigation scheduling. This system will be a substitute to traditional farming method. We will develop such a system that will help a farmer to know his field status in his home or he may be residing in any part of the world. It proposes an automatic irrigation system for the agricultural lands. Currently the automation is one of the important roles in the human life. It is not only provides comfort but also efficiency and time saving. So here it is also designs a smart irrigation technology by using raspberry pi and connecting to the weather API. Raspberry-pi is the main heart of the whole system. An automated irrigation system was developed to optimize water use for agricultural crops. Automation allows us to control appliances automatically. The objectives of this to control the water motor automatically, To monitor the soil, water level using weather API.A robotized irrigation system framework might have been created should streamline water utilize to agriculture crops. Mechanization permits us with control appliances naturally. Those targets for this on control those water motor naturally monitor the soil, water level utilizing weather API In previously we are using the soil moisture control by using some set of sensors by this water is pumping continuously even though it is rainy.so by this over flow of the water is taken place to overcome this problem we are using the cloud monitoring system based on the weather conditions.


2018 ◽  
Vol 216 (1) ◽  
pp. 35-48
Author(s):  
Mohammed Abdul Jabar Abdul Wahab

The smart irrigation systems considered as one of the most new significant technologies in this century to control the watering system and help the plants to grow. This research is focused on the design of an irrigation system based on one of the wireless sensor network (WSN) technologies which is ZigBee technology. The proposed design has an autonomous soil moisture monitoring system with wireless sensor network and ZigBee interfacing for transmitting data from slave to master side. In addition to that, the purpose of monitoring system suggested in this work is to measure and display the ratio of water soil in real-time. Soil moisture sensors have been used in this proposed design for measuring changes in soil volumetric water and changes ration of water found in the soil was evaluated under outdoor environment conditions for two averages of watered soil (40% and 70%). The real-time data of watered soil has been collected for two different value of watering (40 and 70%) and data collected vary based on location of the sensor in soil and how much soil dried in that point. It is found that the water ratio (70%) is better than (40%) from the experimental results.


Author(s):  
Doan Perdana ◽  
Luky Renaldi ◽  
Ibnu Alinursafa

The high consumption and low production of agricultural plants have compelled the Indonesian government to import the quantity necessary to meet annual domestic needs. Therefore, a system was designed to measure the level of elements, such as nitrogen, phosphorus, and potassium, in the soil in order to improve the yield of plants. This involves the use of nitrogen, phosphorus, and potassium fertilizers and soil moisture sensors with an automatic flushing system to control the measurement in real time. Moreover, an Antares LR-ESP201 Board was employed to transmit data to the cloud and Low-Power Wide Area Network LoRa was also applied at a frequency of 920–923 MHz. The data were displayed on an Android smartphone based on the Internet of Things. The results showed that the system allows users to measure the nitrogen, phosphorus, and potassium levels directly through the Android application in order to control the soil content and fertilization, and to ensure an effective watering process on a farm.


Author(s):  
Anton Limbo ◽  
Nalina Suresh ◽  
Set-Sakeus Ndakolute ◽  
Valerianus Hashiyana ◽  
Titus Haiduwa ◽  
...  

Farmers in Namibia currently operate their irrigation systems manually, and this seems to increase labor and regular attention, especially for large farms. With technological advancements, the use of automated irrigation could allow farmers to manage irrigation based on a certain crops' water requirements. This chapter looks at the design and development of a smart irrigation system using IoT. The conceptual design of the system contains monitoring stations placed across the field, equipped with soil moisture sensors and water pumps to maintain the adequate moisture level in the soil for the particular crop being farmed. The design is implemented using an Arduino microcontroller connected to a soil moisture sensor, a relay to control the water pump, as well as a GSM module to send data to a remote server. The remote server is used to represent data on the level of moisture in the soil to the farmers, based on the readings from the monitoring station.


Sign in / Sign up

Export Citation Format

Share Document