scholarly journals Minimizing Energy Consumption on Mobile Phone by Rearranging Transport Protocol Load

2018 ◽  
Vol 7 (3.2) ◽  
pp. 713
Author(s):  
S Suherman ◽  
Naemah Mubarakah ◽  
Marwan Al-Akaidi

There are two transport layer protocols that have been used in the internet protocol (IP) networks: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Both protocols have been utilized for video streaming applications. This paper examines energy consumed by a mobile device when TCP or UDP employed by the application within it for streaming a video file. A transport protocol load management is proposed to reduce the mobile device energy consumptions. The experiments were conducted in the 802.11 environment. The results show that the proposed method is able to minimize mobile device energy consumptions up to 10.7% and 3.34% for both TCP and UDP protocols.  

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1320
Author(s):  
Joong-Hwa Jung ◽  
Moneeb Gohar ◽  
Seok-Joo Koh

The Constrained Application Protocol (CoAP) is a representative messaging protocol for Internet of Things (IoT) applications. It is noted that a lot of IoT-based streaming applications have been recently deployed. Typically, CoAP uses User Datagram Protocol (UDP) as its underlying protocol for lightweight messaging. However, it cannot provide reliability, since it is based on UDP. Thus, the CoAP over Transmission Control Protocol (TCP) was recently proposed so as to provide reliability. However, the existing schemes do not provide the error handling and flow controls suitably for IoT-based streaming applications. This tends to induce throughput degradation in wireless lossy networks. In this paper, we propose a CoAP-based streaming control (CoAP-SC) scheme, which is an extension of CoAP over UDP with error handling and flow control for throughput enhancement. The proposed CoAP-SC scheme is designed by considering the sequence number of data message, the use of ACK messages, and the buffer size of sending buffer. To do this, a new CoAP option is defined. For performance analysis, the proposed scheme is implemented and compared with the existing schemes. From the testbed experimentations in various network environments, we see that the proposed CoAP-SC scheme can provide better throughput than the existing CoAP-based schemes by performing the error handling and flow control operations effectively.


10.29007/62kx ◽  
2018 ◽  
Author(s):  
Kaushika Patel

Transport layer deals with process to process communication. It has reliable and non reliable services for communication. Transmission Control Protocol (TCP) is the most reliable protocol on transport layer. The basic version of TCP was designed by considering wired networks. Then other implementations could bring enhancement in basic design. The discussion is centered on one of the TCP version TCP Westwood with its New Reno implementation. Characteristics of fairness and friendliness with other competing connections have been evaluated and presented.


2015 ◽  
Vol 7 (3) ◽  
pp. 89 ◽  
Author(s):  
Stan McClellan ◽  
Wuxu Peng ◽  
Ed Gonzalez

The Stream Control Transmission Proto-col (SCTP) is a relatively new transport protocol. Ithas several underlying mechanisms that are similar tothe Transmission Control Protocol (TCP), as well asseveral improvements that are important in certainclasses of applications. The timeout scheme of SCTP,however, is almost identical to that used in TCP.With the dynamics of today’s Internet, that timeoutscheme may be too passive. This paper presents an al-gorithm which dynamically adjusts the overall contextof the retransmission timeout process without chang-ing the fundamental retransmission mechanisms. Thisapproach manages the impact of fast retransmissionsand timeouts to significantly improve the throughputof SCTP applications. The algorithm has been im-plemented and tested in real network environments.Experimental results show that the algorithm avoidsspurious retransmissions and provides better through-put by intelligently managing RTO boundaries andallowing conventional timeout schemes to participatemore actively in the retransmission process.


Author(s):  
Suherman Suherman ◽  
Deddy Dikmawanto ◽  
Syafruddin Hasan ◽  
Marwan Al-Akaidi

<span>Transmission control protocol provides reliable communication between two or more parties. Each transmitted packet is acknowledged to make sure successful deliveries. Transport layer security protocols send security information exchange as TCP loads. As results, the handshaking stage experiences longer delay as TCP acknowledgement process has already been delay prone. Furthermore, the security message transfers may have their own risks as they are not well protected yet. This paper proposes TCP-embedded three pass protocol for dynamic key exchange. The key exchange is embedded into TCP headers so that transmission delay is reduced, and message transfer is secured. The proposed protocol was assessed on self network by using socket programming in lossless environment. The assessments showed that the proposed protocol reduced three-pass protocol message transfer delay up to 25.8% on lossless channel. The assessment on security also showed that TCP-embedded three pass protocol successfully secured each transmitted TCP load using a unique key; that is much securer than the compared method.</span>


2018 ◽  
Author(s):  
Kiramat

Transmission Control Protocol (TCP), the most popular transport layer communication protocol for the Internet.It was originally designed for wired networks, where Bit Error Rate (BER) is low and congestion is the primary cause of packet loss [1].This article analyzes the issues in TCP, such as slow start, congestion control, collisions, low BER etc. Then it provides systematic analysis the issues regarding to wireless network i.e., Head of Line Blocking. At the end it proposes solution forTCP enhancement specific to wireless network.


2019 ◽  
Author(s):  
Abbas Khurum

Transmission Control Protocol (TCP), the most popular transport layer communication protocol for the Internet. It was originally designed for wired networks, where Denial of Service (DoS) attacks are very common. This article analyzes the TCP SYN flood (a.k.a. SYN flood) Issue in TCP, that is a type of Distributed Denial of Service (DoS) attack that exploits part of the normal TCP three-way handshake to consume resources on the targeted server and render it unresponsive. At the end it proposes solution for TCP SYN flood.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Konstantinos Tsiknas ◽  
George Stamatelos

An important application for the IEEE 802.16 technology (also called WiMAX) is to provide high-speed access to the Internet where the transmission control protocol (TCP) is the core transport protocol. In this paper we study through extensive simulation scenarios the performance characteristics of five representative TCP schemes, namely, TCP New Reno, Vegas, Veno, Westwood, and BIC, in WiMAX (and WLANs) networks, under the conditions of correlated wireless errors, asymmetric end-to-end capabilities, and link congestion. The target is to evaluate how the above conditions would affect the TCP congestion control and suggest the best schemes to be employed in WiMAX networks.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 711
Author(s):  
Mumajjed Ul Mudassir ◽  
M. Iram Baig

Multihomed smart gas meters are Internet of Things (IoT) devices that transmit information wirelessly to a cloud or remote database via multiple network paths. The information is utilized by the smart gas grid for accurate load forecasting and several other important tasks. With the rapid growth in such smart IoT networks and data rates, reliable transport layer protocols with efficient congestion control algorithms are required. The small Transmission Control Protocol/Internet Protocol (TCP/IP) stacks designed for IoT devices still lack efficient congestion control schemes. Multipath transmission control protocol (MPTCP) based congestion control algorithms are among the recent research topics. Many coupled and uncoupled congestion control algorithms have been proposed by researchers. The default congestion control algorithm for MPTCP is coupled congestion control by using the linked-increases algorithm (LIA). In battery powered smart meters, packet retransmissions consume extra power and low goodput results in poor system performance. In this study, we propose a modified Fast-Vegas-LIA hybrid congestion control algorithm (MFVL HCCA) for MPTCP by considering the requirements of a smart gas grid. Our novel algorithm operates in uncoupled congestion control mode as long as there is no shared bottleneck and switches to coupled congestion control mode otherwise. We have presented the details of our proposed model and compared the simulation results with the default coupled congestion control for MPTCP. Our proposed algorithm in uncoupled mode shows a decrease in packet loss up to 50% and increase in average goodput up to 30%.


2013 ◽  
Vol 401-403 ◽  
pp. 1766-1771 ◽  
Author(s):  
Lan Kou ◽  
Si Rui Chen ◽  
Rui Wang

Multipath Transmission Control Protocol (MPTCP), a transport layer protocol, proposed by the IETF working group in 2009, can provide multipath communication end to end. It also can improve the utilization of network resources and network transmission reliability. However, that how to select multiple paths to improve the end to end overall throughput, and how to avoid the throughput declining by the performance difference, become the focus of this study. We propose a path selection strategy based on improved gray relational analysis, and set the optimal values of the QoS parameters for the selected paths as the reference sequence. According to the value of improved grey relational degree (IGRD) which is compared with reference sequence, we select the paths with better performance, smaller difference for transmission.


Sign in / Sign up

Export Citation Format

Share Document