scholarly journals Effect of Storage Temperature on Bio efficacy of Aqueous Extract of Ganoderma lucidum

2019 ◽  
Vol 4 (3) ◽  
pp. 190-196
Author(s):  
Rajkumar Tulsawani ◽  
Purva Sharma ◽  
Mamta Rautela

Stability testing is key requirement in the drug development process along with storage temperature which may deteriorate bio-constituents and efficacy of natural products. Aqueous extract of Ganoderma lucidum has revealed pharmacological effects against high altitude stressors and has potential for mitigating high altitude maladies. In the present study, the extract of Ganoderma lucidum was stored at different storage conditions such as room temperature, 4 °C and -20 °C for two year and qualitative and quantitative analysis of bio-constituents and bio-efficacy was carried out. No significant change was observed in any extract kept in different temperature conditions in terms of its polysaccharide, phenolic and flavonoids content. The extract kept at room temperature absorbed slight moisture in few samples but no change in overall polysaccharide, phenolic and flavonoids content was recorded. The moisture absorption problem was not observed in extracts stored at 4 °C and -20 °C. The bio-efficacy of the extract at room temperature, 4 °C or -20 °C were comparable to the freshly prepared extract and the data from the studies suggest that extract has good shelf life up to two year without loss of bio-efficacy. Overall, the extract retained its bio-efficacy for two years at different temperature storage conditions.

Author(s):  
B A Middleton ◽  
L M Morgan ◽  
G W Aherne ◽  
V Marks

The performance in radioimmunoassay of four antisera after storage at temperatures ranging from −40°C to room temperature, in three physical states (frozen, liquid or freeze dried) was investigated over a 3-year period. No deterioration in antiserum performance in terms of precision and accuracy of quality control serum measurement or recovery of ligand was apparent under any of the storage conditions studied. Some lowering of titre became apparent in two of the antisera over the study period. Deterioration was most marked when antiserum was stored lyophilised at room temperature. Storage of antiserum frozen confers no advantage over storage at 4°C provided precautions are taken to minimise bacterial contamination when storing antiserum in liquid form.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Jerónimo Vázquez-Ramírez ◽  
Susanna E. Venn

The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.


2021 ◽  
pp. 10-19
Author(s):  
Asnawi Asnawi ◽  
Maskur Maskur ◽  
Adji Santoso Dradjat

The purpose of this study were to compare the quality of spermatozoa stored at 26⁰C, 5⁰C using diluents of NaCl, 10% glucose and 5% glucose. The spermatozoa of a rooster was collected and divided into 6 parts, each 2 tubes diluted in a ratio of 1:1 using NaCl, Glucose5% and Glucose 10%, then each 3 tubes with different diluents were stored at 26⁰C and 5⁰C. Observations of motility, viability and abnormalities of spermatozoa were carried out half an hour, 1 hour after dilution, followed every 2 hours until the ninth hours. The results showed that spermatozoa stored for 9 hours at a temperature of 26⁰C with a physiological diluent of NaCl, 10% Glucose and 5% Glucose each were different (P, < 0.05) with motility 50 ± 0.0%, 42 ± 10.95. % and 34±8.94%, respectively. At storage temperature of 5⁰C for 9 hours, physiological NaCl, 10% glucose and 5% glucose were significantly different (P<0.05) with motility 58.00±10.95%, 46.00±8.94% and 38.00±, respectively. 10.95% in a row. The viability of spermatozoa at 26⁰C storage with 5% glucose diluent was better than 10% glucose and physiological NaCl (P<0.05), 58.93±1.27%, 42.93±1.48% and 33.43±1.27% , while the physiological NaCl diluent and 10% glucose were not significantly different (P>0.05). At 5⁰C storage the viability of spermatozoa in the three diluents was not significantly different, with values of Glucose 10%, Glucose 5% and physiological NaCl 52.57±5.15%, 52.21±5.02% and 48.14±8.09%, respectively. Spermatozoa abnormalities at storage temperature 26⁰C and 5⁰C for 9 hours using physiological NaCl diluent, 5% glucose and 10% glucose, were not significantly different and varied between 5 to 10%. Finally, it can be concluded that at room temperature storage less than 4 hours the quality of spermatozoa was better with 5% glucose diluent, while for cold storage beyond 4 hours the quality of spermatozoa with NaCl diluent was higher


2019 ◽  
Vol 51 (2) ◽  
pp. 159-163
Author(s):  
B. Alev ◽  
S. Tunali ◽  
R. Yanardag ◽  
A. Yarat

Enzymes are made of protein, that is why they are sensitive molecules and are affected by storage conditions. A small change in enzyme activity during storage may cause a big error in analysis results. The aim of the study was to evaluate the effects of storage time and temperature on urease activity. Urease solutions were prepared at different activities (from 100 to 2000 U/mL) and stored at room temperature, in the refrigerator (4°C), and in the deep freezer (-18°C and -80°C). Activity measurements were made at regular intervals until 28 days by the modified Weatherburn method. The relative activities of 100-1000 U/mL urease solutions stored at room temperature, 4, -18 or -80°C were 75% and below after 4 days. Twenty-eight days later, for 2000 U/mL urease solutions, only at room temperature, the relative activity was reduced to 37%, while at 4, -18 or -80°C, the relative activities were above 80%. Since urease can be maintained at 4°C for 28 days without significant loss of activity, it has practical importance. Low-activity urease solutions (such as 100-1000 U/mL) should not be stored at -18 or -80°C for short or long term storage, they should be stored at 4°C only for one day. Keywords: Urease activity, storage time, storage temperature


Author(s):  
James Chhay ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Dale Chen ◽  
Hsin Kuo

  Background Kombucha tea is a fermented tea beverage that is mainly consumed for its associated-health benefits. These associated-health benefits may range from detoxifying the body to cancer treating. However, there is little to no scientific evidence that suggests that they work on humans. Similarly, kombucha tea is also prone to post-fermentation. This presents possible ethanol production and accumulation within the tea after packaging which can pose a possible health risk to susceptible population if not properly labelled or controlled. This study will investigate if there is any post-ethanol accumulation in commercially produced kombucha tea products under various storage conditions. Methods The ethanol concentration of 3 different kombucha tea brands (i.e.: Pure+, Health-Ade, and RISE) at various storage conditions (i.e.: no storage, refrigeration, and room temperature) were analyzed using GC-FID to determine post-ethanol accumulation. In addition, NCSS software was used to conduct a statistical analysis on the data to determine whether the 3 different kombucha tea brands exceeded the ethanol regulatory limit and whether the ethanol accumulation was dependent on storage temperatures. Results The mean ethanol concentration for Pure+, Health-Ade, and RISE after refrigeration for 3 weeks were 0.722%, 0.696%, and 0.050% relatively which all showed a slight decrease in ethanol compared to their baseline ethanol levels (i.e.: no storage). Similarly, Pure+, Health-Ade, and RISE mean ethanol concentration after room temperature storage were 1.766%, 1.285%, and 0.794% relatively which indicates ethanol accumulation. Statistical analysis showed that there is a significant difference between room temperature storage and the other 2 storage conditions (i.e.: no storage and refrigeration). Also, only Pure+ and Health-Ade under room temperature storage showed a statistically significant mean ethanol concentration above the regulatory limit. Conclusion Results suggests that room temperature storage of Pure+, Health-Ade, and RISE for 3 weeks increased the ethanol levels significantly while refrigerating them will decrease the ethanol levels slightly which can minimize any potential post-fermentation process from happening. Furthermore, only Pure+ and Health-Ade under room temperature storage for 3 weeks were over the 1% ABV regulatory limit. Lastly, the data obtained from this study can be used to develop guidelines and policies in regulating kombucha tea manufacturers and in educating the public and other regulatory agencies on the matter.  


1986 ◽  
Vol 66 (3) ◽  
pp. 617-626 ◽  
Author(s):  
D. H. WEBSTER ◽  
P. D. LIDSTER

Phosphate compounds (NH4H2PO4, KH2PO4 and CaH4(PO4)2 in 1982; NH4H2PO4 in 1983) applied to McIntosh apple trees as six foliar sprays at weekly intervals starting 4 wk after bloom, increased leaf and fruit P, decreased loss of firmness under some storage conditions and decreased incidence of low-temperature storage disorders. Phosphate sprays improved firmness retention of apples stored in either 5% CO2 plus 3% O2 or 0.7% CO2 plus 1% O2 in 1982 and maintained fruit firmness during a simulated shelf life at 20 °C for apples stored at 0 °C. Firmness retention at 20 °C of the 1983 crop was improved by monobasic ammonium phosphate regardless of storage temperature. Apple samples from unsprayed control trees had mean phosphorus concentrations of 85.4 and 94.4 ppm fresh weight in 1982 and 1983, respectively (whole fruit less seeds and stems).Key words: Apple, fruit phosphorus, low temperature breakdown, core flush


2015 ◽  
Vol 59 (2) ◽  
pp. 51-61 ◽  
Author(s):  
Allna Piotraszewska-Pająk ◽  
Anna Gliszczyńska-Świgło

AbstractThe colour of honey is one of the most important quality criteria for consumers. The colour depends mainly on the content of plant pigments but the honey consistency, shape, and size of the crystals may also influence the honey colour parameters. It is related to the crystallisation and decrystallisation processes of honey during storage. In the present study, directions of colour changes of honey during storage were evaluated using a tristimulus colorimeter and the CIE 1976 L*a*b* and CIE L*C*hosystems. The effect of time (3 and 9 months) and storage conditions (cold storage, room temperature storage with access to light, and room temperature storage without access to light) on the colour of nectar honeys was investigated. The results obtained showed that both the type of honey and the storage conditions influenced the honey colour parameters. Significant differences in direction and intensity of the colour changes of honey during storage were observed. These differences make it difficult to indicate which storage conditions are optimal to preserve the colour of the honey. It was found that acacia and heather honeys were the most susceptible to colour changes during long-term storage in all of the study’s applied conditions, whereas rape and buckwheat honeys were the most stable in colour parameters.


1986 ◽  
Vol 53 (4) ◽  
pp. 615-624 ◽  
Author(s):  
Geoffrey R. Andrews

SummaryThe rates of change in light reflectance and in CIELAB tri-stimulus colour values were compared for direct and indirect ultra heat treated (UHT) and sterilized milk in glass and polyethene bottles stored under different conditions. The rate of change of milk reflectance was higher at shorter wavelengths and the milk colour changed more rapidly at 30 and 37 °C than at room temperature. Sterilized milk in polyethene bottles was bleached when stored in an illuminated cabinet. The colour of skimmed milk changed more rapidly than that of whole milk. The rate of change in reflectance of direct UHT milk above 590 nm was found to be higher than in other milks. A statistical interaction was found between the fat content and the storage temperature for the CIELAB values. The homogenization pressure used in processing UHT milk samples did not affect the rate of change of the milk colour. The main implication of these findings may be that milk colour cannot be used to assess the heat treatment of a milk when the age or storage conditions of the milk are unknown.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7350
Author(s):  
Gajanan S. Kothawade ◽  
Sindhuja Sankaran ◽  
Austin A. Bates ◽  
Brenda K. Schroeder ◽  
Lav R. Khot

The study evaluates the suitability of a field asymmetric ion mobility spectrometry (FAIMS) system for early detection of the Pythium leak disease in potato tubers simulating bulk storage conditions. Tubers of Ranger Russet (RR) and Russet Burbank (RB) cultivars were inoculated with Pythium ultimum, the causal agent of Pythium leak (with negative control samples as well) and placed in glass jars. The headspace in sampling jars was scanned using the FAIMS system at regular intervals (in days up to 14 and 31 days for the tubers stored at 25 °C and 4 °C, respectively) to acquire ion mobility current profiles representing the volatile organic compounds (VOCs). Principal component analysis plots revealed that VOCs ion peak profiles specific to Pythium ultimum were detected for the cultivars as early as one day after inoculation (DAI) at room temperature storage condition, while delayed detection was observed for tubers stored at 4 °C (RR: 5th DAI and RB: 10th DAI), possibly due to a slower disease progression at a lower temperature. There was also some overlap between control and inoculated samples at a lower temperature, which could be because of the limited volatile release. Additionally, data suggested that the RB cultivar might be less susceptible to Pythium ultimum under reduced temperature storage conditions. Disease symptom-specific critical compensation voltage (CV) and dispersion field (DF) from FAIMS responses were in the ranges of −0.58 to −2.97 V and 30–84% for the tubers stored at room temperature, and −0.31 to −2.97 V and 28–90% for reduced temperature, respectively. The ion current intensities at −1.31 V CV and 74% DF showed distinctive temporal progression associated with healthy control and infected tuber samples.


Sign in / Sign up

Export Citation Format

Share Document