PROSPECTION: HOW SPINTRONICS WILL AFFECT MACHINE VISION

Author(s):  
D. V. Chaus ◽  
S. A. Mikaeva

The article describes a look into the future, about how spintronics will affect machine vision. The authors describe the electron spin, the effect of giant magnetoresistance, and the device of spin diodes. Creating compact devices in the field of nanoelectronics creates a problem of high energy consumption. Relatively recently formed science – spintronics – allows you to reduce costs. It is known that the electron is the carrier of an elementary charge, and this property is based on the operation of all electronic devices. However, this particle is also characterized by the presence of its own angular momentum, i.e., spin. This causes the existence of a magnetic field around the electron. The effect of giant magnetoresistance also plays an important role. This phenomenon is considered the basis of spintronics and consists of the following. When a current flows through a structure that has several alternating layers, its resistance may vary depending on the nature of the magnetization of each layer in relation to each other.

Author(s):  
P.M. Bechasnov

Currently, electric rocket engines have largely reached the efficiency limits determined by the principle of rocket thrust. Electrodynamic tethers, interacting with an external magnetic field and actually being jet engines, are devoid of such restrictions. However, their thrust is limited by the concentration of the external plasma and depends on its fluctuations. The paper is the first to propose to create a current in the tether by propellant ionization, receiving a large thrust from a relatively short tether and a strong magnetic field deflecting charged cosmic particles. The numerical analysis showed that the length of the tether of hundreds of meters near the Earth provides a specific impulse of up to hundreds of kilometers per second and its proper acceleration of the power plant at a level of 0.01 m / s2, as well as protection of the central region of the tether from particles with an energy of more than 1 MeV. This makes it possible to consider it for maneuvering satellites with practically no restrictions on the delta-V, for performing fast high-energy inter-orbital flights and for radiation protection of a high-latitude orbital station. In the future, such a tether can be used for rapid deceleration of orbital objects, launching into geostationary orbit, interplanetary transfers and protection of objects from charged particles. The study describes possible areas of application and directions for further research of the concept of such a tether.


Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


Author(s):  
Olivier Crépel ◽  
Philippe Descamps ◽  
Patrick Poirier ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
...  

Abstract Magnetic field based techniques have shown great capabilities for investigation of current flows in integrated circuits (ICs). After reviewing the performances of SQUID, GMR (hard disk head technologies) and MTJ existing sensors, we will present results obtained on various case studies. This comparison will show the benefit of each approach according to each case study (packaged devices, flip-chip circuits, …). Finally we will discuss on the obtained results to classify current techniques, optimal domain of applications and advantages.


Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


2019 ◽  
Vol 488 (4) ◽  
pp. 5713-5727
Author(s):  
Kuldeep Singh ◽  
Indranil Chattopadhyay

ABSTRACT We study relativistic magnetized outflows using relativistic equation of state having variable adiabatic index (Γ) and composition parameter (ξ). We study the outflow in special relativistic magnetohydrodynamic regime, from sub-Alfvénic to super-fast domain. We showed that, after the solution crosses the fast point, magnetic field collimates the flow and may form a collimation-shock due to magnetic field pinching/squeezing. Such fast, collimated outflows may be considered as astrophysical jets. Depending on parameters, the terminal Lorentz factors of an electron–proton outflow can comfortably exceed few tens. We showed that due to the transfer of angular momentum from the field to the matter, the azimuthal velocity of the outflow may flip sign. We also study the effect of composition (ξ) on such magnetized outflows. We showed that relativistic outflows are affected by the location of the Alfvén point, the polar angle at the Alfvén point and also the angle subtended by the field lines with the equatorial plane, but also on the composition of the flow. The pair dominated flow experiences impressive acceleration and is hotter than electron–proton flow.


1993 ◽  
Vol 28 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Suzuki ◽  
S. Miyahara ◽  
K. Takeishi

Gas-permeable film can separate air and water, and at the same time, let oxygen diffuse from the air to the water through the film. An oxygen supply method using this film was investigated for the purpose of reducing energy consumption for wastewater treatment. The oxygen transfer rate was measured for the cases with or without biofilm, which proved the high rate of oxygen transfer in the case with nitrifying biofilm which performed nitrification. When the Gas-permeable film with nitrifying biofilm was applied to the treatment of wastewater, denitrifying biofilm formed on the nitrifying biofilm, and simultaneous nitrification and denitrification occurred, resulting in the high rate of organic matter and T-N removal (7 gTOC/m2/d and 4 gT-N/m2/d, respectively). However, periodic sloughing of the denitrifying biofilm was needed to keep the oxygen transfer rate high. Energy consumption of the process using the film in the form of tubes was estimated to be less than 40% of that of the activated sludge process.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


1995 ◽  
Vol 148 (1-2) ◽  
pp. 329-330 ◽  
Author(s):  
H. Kano ◽  
A. Okabe ◽  
K. Kagawa ◽  
A. Suzuki ◽  
T. Yaoi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document